The Great London:
Biology

  • Mexico: Asteroid impacts could create niches for early life, suggests Chicxulub crater study

    Mexico: Asteroid impacts could create niches for early life, suggests Chicxulub crater study

    Scientists studying the Chicxulub crater have shown how large asteroid impacts deform rocks in a way that may produce habitats for early life.

    Asteroid impacts could create niches for early life, suggests Chicxulub crater study
    Recovered core from the Chicxulub impact crater [Credit: AWuelbers@ECORD_IODP]

    Around 65 million years ago a massive asteroid crashed into the Gulf of Mexico causing an impact so huge that the blast and subsequent knock-on effects wiped out around 75 per cent of all life on Earth, including most of the dinosaurs. This is known as the Chicxulub impact.

    In April and May 2016, an international team of scientists undertook an offshore expedition and drilled into part of the Chicxulub impact crater. Their mission was to retrieve samples from the rocky inner ridges of the crater -- known as the 'peak ring' -- drilling 506 to 1335 metres below the modern day sea floor to understand more about the ancient cataclysmic event.

    Now, the researchers have carried out the first analysis of the core samples. They found that the impact millions of years ago deformed the peak ring rocks in such a way that it made them more porous, and less dense, than any models had previously predicted.

    Asteroid impacts could create niches for early life, suggests Chicxulub crater study
    Recovered core from the Chicxulub impact crater [Credit: AWuelbers@ECORD_IODP]

    Porous rocks provide niches for simple organisms to take hold, and there would also be nutrients available in the pores, from circulating water that would have been heated inside the Earth's crust. Early Earth was constantly bombarded by asteroids, and the team have inferred that this bombardment must have also created other rocks with similar physical properties. This may partly explain how life took hold on Earth.

    The study, which is published today in the >journal Science, also confirmed a model for how peak rings were formed in the Chicxulub crater, and how peak rings may be formed in craters on other planetary bodies.

    The team's new work has confirmed that the asteroid, which created the Chicxulub crater, hit the Earth's surface with such a force that it pushed rocks, which at that time were ten kilometres beneath the surface, farther downwards and then outwards. These rocks then moved inwards again towards the impact zone and then up to the surface, before collapsing downwards and outwards again to form the peak ring. In total they moved an approximate total distance of 30 kilometres in a matter of a few minutes.

    Asteroid impacts could create niches for early life, suggests Chicxulub crater study
    Recovered core from the Chicxulub impact crater [Credit: DSmith@ECORD]

    Professor Joanna Morgan, lead author of the study from the Department of Earth Science and Engineering, said: "It is hard to believe that the same forces that destroyed the dinosaurs may have also played a part, much earlier on in Earth's history, in providing the first refuges for early life on the planet. We are hoping that further analyses of the core samples will provide more insights into how life can exist in these subterranean environments."

    The next steps will see the team acquiring a suite of detailed measurements from the recovered core samples to refine their numerical simulations. Ultimately, the team are looking for evidence of modern and ancient life in the peak-ring rocks. They also want to learn more about the first sediments that were deposited on top of the peak ring, which could tell the researchers if they were deposited by a giant tsunami, and provide them with insights into how life recovered, and when life actually returned to this sterilised zone after the impact.

    Source: Imperial College London [November 17, 2016]

  • Evolution: Sex cells evolved to pass on quality mitochondria

    Evolution: Sex cells evolved to pass on quality mitochondria

    Mammals immortalise their genes through eggs and sperm to ensure future generations inherit good quality mitochondria to power the body's cells, according to new UCL research.

    Sex cells evolved to pass on quality mitochondria
    One of a series of ova made in a spell of reproductive mitochondrial interest. The ovum about to ovulate has differentiated 
    from the rest of the surrounding tissue and is getting ready to leave the ovary. Its mitochondria are organized mainly 
    around the nucleus. The cell is full of potential and force. A big journey of life may be about to start 
    [Credit: Odra Noel]

    Before now, it was not known why mammals rely on dedicated sex cells that are formed early in development (a germline) to make offspring whereas plants and other simple animals, such as corals and sponges, use sex cells produced later in life from normal body tissues.

    In a new study, published today in >PLOS Biology and funded by Natural Environment Research Council, Engineering & Physical Sciences Research Council and the Leverhulme Trust, UCL scientists developed an evolutionary model to investigate how these differences evolved over time and discovered that the germline in mammals developed in response to selection on mitochondria (the powerhouses of cells).

    First author and UCL PhD student, Arunas Radzvilavicius, said: "There have been many theories about why mammals have a specialised germline when plants and other ancient animals don't. Some suggest it was due to complexity of tissues or a selfish conflict between cells. The distinction between sex cells and normal body tissues seems to be necessary for the evolution of very complex specialised tissues like brain.

    "Surprisingly, we found that these aren't the reason. Rather, it's about the number of genetic mutations in mitochondrial DNA over time, which differs between organisms, and the variation between cells caused by the mitochondria being randomly partitioned into daughter cells at each division."

    In plants, mitochondrial mutations creep in slowly, so a germline isn't needed as mutations are corrected by natural selection. Mitochondrial variation is maximised by forming the next generation from the same cells used to make normal tissue cells. When the cells divide to form new daughter cells, some receive more mutant mitochondria than others and these cells are then removed through natural selection, preserving the reproductive cells containing higher quality mitochondria.

    In mammals, genetic errors in mitochondria accumulate more quickly due to our higher metabolic rate so using cells that have undergone lots of division cycles would be a liability. Mitochondria are therefore only passed along to the next generation through a dedicated female germline in the form of large eggs. This protects against errors being introduced as eggs undergo many fewer replication cycles than cells in other tissues such as the gut, skin and blood.

    The germline ensures that the best quality mitochondria are transferred but restricts the genetic variation in the next generation of cells in the developing embryo. This is corrected for by mammals generating far too many egg cells which are removed during development. For example, humans are born with over 6 million egg-precursor cells, 90% of which are culled by the start of puberty in a mysterious process called atresia.

    Senior author, Dr Nick Lane (UCL CoMPLEX and Genetics, Evolution & Environment) added: "We think the rise in mitochondrial mutation rate likely occurred in the Cambrian explosion 550 million years ago when oxygen levels rose. This was the first appearance of motile animals in the fossil record, things like trilobites that had eyes and armour plating - predators and prey. By moving around they used their mitochondria more and that increased the mutation rate. So to avoid these mutations accumulating they needed to have fewer rounds of cell division, and that meant sequestering a specialized germline."

    Co-author, Professor Andrew Pomiankowski (UCL Genetics, Evolution & Environment), concluded: "Without a germline, animals with complex development and brains could not exist. Scientists have long tried to explain the evolution of the germline in terms of complexity. Who would have thought it arose from selection on mitochondrial genes? We hope our discovery will transform the way researchers understand animal development, reproduction and aging."

    Source: University College London [December 20, 2016]

  • Evolution: Study sheds light on the function of the penis bone in male competition

    Evolution: Study sheds light on the function of the penis bone in male competition

    A new UCL study examines how the baculum (penis bone) evolved in mammals and explores its possible function in primates and carnivores—groups where many species have a baculum, but some do not.

    Study sheds light on the function of the penis bone in male competition
    Baculum bones [Credit: WikiCommons]

    The baculum has been described as "the most diverse of all bones", varying dramatically in length, width and shape in the male mammals where it is present.

    The research, published today in the Royal Society journal >Proceedings of the Royal Society B, shows that the ancestral mammal, like humans, did not have a baculum - but both ancestral primates and carnivores did. The work uncovers that the baculum first evolved in mammals between 145 and 95 million years ago.

    The study found that prolonged intromission - defined as penetration for longer than 3 minutes - was correlated with baculum presence across the course of primate evolution. Prolonged intromission was also found to predict a longer baculum in primates and carnivores.

    High levels of postcopulatory sexual competition between males also predicted longer bacula in primates.

    First author, Matilda Brindle (UCL Anthropology), said: "Our findings suggest that the baculum plays an important role in supporting male reproductive strategies in species where males face high levels of postcopulatory sexual competition. Prolonging intromission helps a male to guard a female from mating with any competitors, increasing his chances of passing on his genetic material."

    The findings of the study may also provide clues as to why humans do not have a baculum.

    When any cultural aspects of sex are removed and a male's aim is solely to ejaculate, humans have a short intromission duration.

    In species where mating occurs between multiple males and multiple females (known as polygamy), there is acute competition between males to fertilise a female. However, human mating systems are not like this. Instead humans tend to be monogamous or, more rarely, polygynous (where one male mates with multiple females). In these circumstances, only one male has access to a female and postcopulatory competition between males is absent or very low level.

    Brindle added: "Interestingly, humans have neither prolonged intromission durations, nor high levels of postcopulatory sexual competition. Given the results of our study, this may help to unravel the mystery of why the baculum was lost in the human lineage."

    Chimpanzees and bonobos, humans' closest relatives, have very small bacula (between about 6-8mm) and short intromission durations (around 7 seconds for chimpanzees and 15 seconds for bonobos). However, they are characterised by polygamous mating systems, so they experience high levels of postcopulatory competition between males. The researchers suggest that this may be why these species have retained a baculum - albeit a small one.

    Co-author, Dr Kit Opie (UCL Anthropology), commented: "After the human lineage split from chimpanzees and bonobos and our mating system shifted towards monogamy, probably after 2mya, the evolutionary pressures retaining the baculum likely disappeared. This may have been the final nail in the coffin for the already diminished baculum, which was then lost in ancestral humans."

    Source: University College London [December 14, 2016]

  • Evolution: Photosynthesis more ancient than thought, and most living things could do it

    Evolution: Photosynthesis more ancient than thought, and most living things could do it

    Photosynthesis is the process by which plants, algae and cyanobacteria use the energy from the Sun to make sugar from water and carbon dioxide, releasing oxygen as a waste product. But a few groups of bacteria carry out a simpler form of photosynthesis that does not produce oxygen, which evolved first.

    Photosynthesis more ancient than thought, and most living things could do it
    Primitive bacteria at Yellowstone National Park 
    [Credit: Albatros4825, WikiCommons]

    A new study by an Imperial researcher suggests that this more primitive form of photosynthesis evolved in much more ancient bacteria than scientists had imagined, more than 3.5 billion years ago.

    Photosynthesis sustains life on Earth today by releasing oxygen into the atmosphere and providing energy for food chains. The rise of oxygen-producing photosynthesis allowed the evolution of complex life forms like animals and land plants around 2.4 billion years ago.

    However, the first type of photosynthesis that evolved did not produce oxygen. It was known to have first evolved around 3.5-3.8 billion years ago, but until now, scientists thought that one of the groups of bacteria alive today that still uses this more primate photosynthesis was the first to evolve the ability.

    But the new research reveals that a more ancient bacteria, that probably no longer exists today, was actually the first to evolve the simpler form of photosynthesis, and that this bacteria was an ancestor to most bacteria alive today.

    "The picture that is starting to emerge is that during the first half of Earth's history the majority of life forms were probably capable of photosynthesis," said study author Dr Tanai Cardona, from the Department of Life Sciences at Imperial College London.

    The more primitive form of photosynthesis is known as anoxygenic photosynthesis, which uses molecules such as hydrogen, hydrogen sulfide, or iron as fuel -- instead of water.

    Traditionally, scientists had assumed that one of the groups of bacteria that still use anoxygenic photosynthesis today evolved the ability and then passed it on to other bacteria using horizontal gene transfer -- the process of donating an entire set of genes, in this case those required for photosynthesis, to unrelated organisms.

    However, Dr Cardona created an evolutionary tree for the bacteria by analyzing the history of a protein essential for anoxygenic photosynthesis. Through this, he was able to uncover a much more ancient origin for photosynthesis.

    Instead of one group of bacteria evolving the ability and transferring it to others, Dr Cardona's analysis reveals that anoxygenic photosynthesis evolved before most of the groups of bacteria alive today branched off and diversified. The results are published in the journal PLOS ONE.

    "Pretty much every group of photosynthetic bacteria we know of has been suggested, at some point or another, to be the first innovators of photosynthesis," said Dr Cardona. "But this means that all these groups of bacteria would have to have branched off from each other before anoxygenic photosynthesis evolved, around 3.5 billion years ago.

    "My analysis has instead shown that anoxygenic photosynthesis predates the diversification of bacteria into modern groups, so that they all should have been able to do it. In fact, the evolution of oxygneic photosynthesis probably led to the extinction of many groups of bacteria capable of anoxygenic photosynthesis, triggering the diversification of modern groups."

    To find the origin of anoxygenic photosynthesis, Dr Cardona traced the evolution of BchF, a protein that is key in the biosynthesis of bacteriochlorophyll a, the main pigment employed in anoxygenic photosynthesis. The special characteristic of this protein is that it is exclusively found in anoxygenic photosynthetic bacteria and without it bacteriochlorophyll a cannot be made.

    By comparing sequences of proteins and reconstructing an evolutionary tree for BchF, he discovered that it originated before most described groups of bacteria alive today.

    Author: Hayley Dunning | Source: Imperial College London [March 15, 2016]

  • Scotland: Patrick Matthew: Evolution's overlooked third man

    Scotland: Patrick Matthew: Evolution's overlooked third man

    The horticulturist who came up with the concept of ‘evolution by natural selection’ 27 years before Charles Darwin did should be more widely acknowledged for his contribution, states a new paper by a King’s College London geneticist.

    Patrick Matthew: Evolution's overlooked third man
    Patrick Matthew [Credit: The Patrick Matthew Project]

    The paper, published in the Biological Journal of the Linnean Society, argues that Patrick Matthew deserves to be considered alongside Charles Darwin and Alfred Russel Wallace as one of the three originators of the idea of large-scale evolution by natural selection.

    Furthermore, Matthew’s version of evolution by natural section captures a valuable aspect of the theory that isn't so clear in Darwin's version – namely, that natural selection is a deductive certainty more akin to a ‘law’ than a hypothesis or theory to be tested.

    Patrick Matthew (1790-1874) was a Scottish landowner with a keen interest in politics and agronomy.  He established extensive orchards of apples and pears on his estate at Gourdie Hill, Perthshire, and became adept in horticulture, silviculture and agriculture.

    Whilst Darwin and Wallace’s 1858 paper to the Linnean Society, On the Origin of Species, secured their place in the history books, Matthews had set out similar ideas 27 years earlier in his book On Naval Timber and Arboriculture. The book, published in 1831, addressed best practices for the cultivation of trees for shipbuilding, but also expanded on his concept of natural selection.

    “There is a law universal in nature, tending to render every reproductive being the best possibly suited to its condition that its kind, or that organized matter, is susceptible of, which appears intended to model the physical and mental or instinctive powers, to their highest perfection, and to continue them so. This law sustains the lion in his strength, the hare in her swiftness, and the fox in his wiles.”  (Matthew, 1831: 364)

    In 1860, Matthew wrote to point out the parallels with his prior work, several months after the publication of On the origin of species.  Darwin publically wrote in 1860 “I freely acknowledge that Mr. Matthew has anticipated by many years the explanation which I have offered of the origin of species”, while Wallace wrote publically in 1879 of “how fully and clearly Mr. Matthew apprehended the theory of natural selection, as well as the existence of more obscure laws of evolution, many years in advance of Mr. Darwin and myself”, and further declared Matthew to be “one of the most original thinkers of the first half of the 19th century”.  However, both asserted their formulations were independent of Matthew’s.

    Even if Matthew did not influence Darwin and Wallace, his writings provide a valuable third point of reference on the notion of macroevolution by natural selection, argues the paper’s author, Dr Michael Weale. Dr Weale has created a public website to act as an online repository of the writings by Patrick Matthew, including some of his lesser-known work.

    Dr Michael Weale, from the Department of Medical and Molecular Genetics at King’s College London, said: ‘Whilst Darwin and Wallace both deserve recognition for their work, Matthew, the outsider who deduced his idea as part of a grand scheme of a purposeful universe, is the overlooked third man in the story. Matthew’s story is an object lesson in the perils of low-impact publishing. Despite its brevity, and to some extent because of it, Matthew’s work merits our renewed attention.’

    Source: King's College London [April 20, 2015]

  • Ecosystems: Humans artificially drive evolution of new species

    Ecosystems: Humans artificially drive evolution of new species

    Species across the world are rapidly going extinct due to human activities, but humans are also causing rapid evolution and the emergence of new species. A new study published today summarises the causes of humanmade speciation, and discusses why newly evolved species cannot simply replace extinct wild species. The study was led by the Center for Macroecology, Evolution and Climate at the University of Copenhagen.

    Humans artificially drive evolution of new species
    The London Underground Mosquito (Culex pipiens molestus) has been found in underground systems around the world.
    It is believed to have evolved from the common house mosquito through a subterranean population 
    [Credit: Walkabout12/WikiCommons]

    A growing number of examples show that humans not only contribute to the extinction of species but also drive evolution, and in some cases the emergence of entirely new species. This can take place through mechanisms such as accidental introductions, domestication of animals and crops, unnatural selection due to hunting, or the emergence of novel ecosystems such as the urban environment.

    Although tempting to conclude that human activities thus benefit as well as deplete global biodiversity, the authors stress that extinct wild species cannot simply be replaced with newly evolved ones, and that nature conservation remains just as urgent.

    "The prospect of 'artificially' gaining novel species through human activities is unlikely to elicit the feeling that it can offset losses of 'natural' species. Indeed, many people might find the prospect of an artificially biodiverse world just as daunting as an artificially impoverished one" says lead author and Postdoc Joseph Bull from the Center for Macroecology, Evolution and Climate at the University of Copenhagen.

    The study which was carried out in collaboration with the University of Queensland was published in >Proceedings of Royal Society B. It highlights numerous examples of how human activities influence species' evolution. For instance: as the common house mosquito adapted to the environment of the underground railway system in London, it established a subterranean population. Now named the 'London Underground mosquito', it can no longer interbreed with its above ground counterpart and is effectively thought to be a new species.

    Humans artificially drive evolution of new species
    Recent genetic data for the damselfly Megaloprepus caerulatus in Central America suggests 
    that forest fragmentation has led it to diverge into more than one species 
    [Credit: Katja Schultz via Flickr]

    "We also see examples of domestication resulting in new species. According to a recent study, at least six of the world's 40 most important agricultural crops are considered entirely new" explains Joseph Bull.

    Furthermore, unnatural selection due to hunting can lead to new traits emerging in animals, which can eventually lead to new species, and deliberate or accidental relocation of species can lead to hybridization with other species. Due to the latter, more new plant species in Europe have appeared than are documented to have gone extinct over the last three centuries.

    Although it is not possible to quantify exactly how many speciation events have been caused through human activities, the impact is potentially considerable, the study states.

    "In this context, 'number of species' becomes a deeply unsatisfactory measure of conservation trends, because it does not reflect many important aspects of biodiversity. Achieving a neutral net outcome for species numbers cannot be considered acceptable if weighing wild fauna against relatively homogenous domesticated species. However, considering speciation alongside extinction may well prove important in developing a better understanding of our impact upon global biodiversity. We call for a discussion about what we, as a society, actually want to conserve about nature" says Associate Professor Martine Maron from the University of Queensland.

    Researchers do agree that current extinction rates may soon lead to a 6th period of mass extinction. Since the last Ice Age, 11.500 years ago, it is estimated that 255 mammals and 523 bird species has gone extinct, often due to human activity. In the same period, humans have relocated almost 900 known species and domesticated more than 470 animals and close to 270 plant species.

    Source: Faculty of Science - University of Copenhagen [June 28, 2016]

  • Ecosystems: Immense species richness of bacterial-eating microorganisms discovered in soil

    Ecosystems: Immense species richness of bacterial-eating microorganisms discovered in soil

    Typically ignored, the millions of microorganisms that we tread upon daily play a major role in the decomposition of soil matter -- one that is of far greater significance than that of the whales and pandas that tend to steal our attention. A group of researchers has just shown that there is an enormous diversity among a group of bacteria-eating microorganisms known as Cercozoa. In four small soil samples, each consisting of a half gram of soil, they discovered more than 1000 different species per sample. The research suggests that a drier climate in the years ahead due to climate change will contribute to a shift in the number of soil microorganisms, and thus, a shift in the decomposition of soil matter, with as of yet to be known consequences.

    Immense species richness of bacterial-eating microorganisms discovered in soil
    The photo of a testate amoeba's shell (Euglypha) was taken using a scanning electron microscope. If the amoeba was alive, 
    it would protrude from the open end. The shell is approximately 0.04 mm long. Testate amoebae are large Cercozoa. 
    Small amoeba-like Cercozoa can be down to 0.003 mm long. testate amoebae appear to be sensitive to the type 
    of drier climate that we expect in the future [Credit: Clement Duckert, Neuchatel University, Switzerland]

    A team led by researchers from the Section for Terrestrial Ecology (Flemming Ekelund, Christopher B. Harder and Regin Ronn, at the Department of Biology, University of Copenhagen) has just published an article in the >ISME Journal. The group's studies show that there is enormous species diversity among an oft-overlooked group of organisms known as Cercozoa. In four small soil samples, each consisting of just a half gram of soil, the researchers discovered more than 1000 different species per sample. The research was conducted in collaboration with Section for Microbiology staff (Department of Biology, University of Copenhagen) and the eminent British scientist, David Bass (Natural History Museum, London), and is supported by national research councils and the Carlsberg Foundation.

    Associate Professor Flemming Ekelund of the Department of Biology explains, "Cercozoa are small bacteria-eating microorganisms that play a prominent role in soil ecology. Serious interest in these organisms began about 25-30 years ago, as people began to wonder what caused bacteria to disappear from soil. As interest took root, the number of known species increased sharply."

    The name Cercozoa is derived from the Greek word, kerkos (tail), as some of the species within the group have a tail like end, and zoon (animal), as these organisms were previously thought to be a type of animal.

    A single teaspoon of soil (a couple of grams) contains millions of microorganisms, so it is hopeless to create a species list by studying organisms one by one. Furthermore, many of these organisms belong to species unknown to science.

    "We took small soil samples (½-1 gram), from which we analysed DNA strands (genetic material) from hundreds of thousands of organisms" (deep sequencing), explains Christoffer Bugge Harder. "However, it's difficult to catalogue and systematise this huge amount of data. To do so, we used the Section of Microbiology's capacity to deploy specialized statistics tools. Our British colleague, David Bass, contributed precise DNA references for the species in the group that have already been thoroughly catalogued. For now, this remains at just under 1000."

    The studies were conducted in correlation with a climate experiment (Climate) that investigates the consequences of climate change in Denmark, as many climate researchers expect it to present itself, by 2075. Besides being able to report an enormous number of species in these samples, the research also demonstrated that a more arid climate, as expected in 2075, will probably lend to a shift in the occurrence of microorganism species; particularly within a group referred to as testate amoebae.

    Researchers already know that climate change will result in significant shifts in plant and animal frequency. But it can also lead to changed frequencies among microorganisms, which means that climate change could have an impact on the ecological processes at work in soil. More studies are needed for researchers to specify the impact of an offset and the amount of microorganisms found in soil as a result of global warming.

    Source: Faculty of Science - University of Copenhagen [June 21, 2016]

  • Evolution: Divergent climate tolerances play crucial roles in how species evolve

    Evolution: Divergent climate tolerances play crucial roles in how species evolve

    In tropical climes, animals and plants aren't adapted to surviving freezing temperatures - and why would they be? It's never all that cold near the Equator, even at altitude. But in places like the Rocky Mountains, where temperatures can climb into the 100s and dip below freezing, species are hardier and more equipped to deal with such fluctuations.

    Divergent climate tolerances play crucial roles in how species evolve
    The Colorado State University team analyzed thousands of mayflies to compare species diversity between the 
    Colorado Rockies and the Ecuadorean Andes [Credit: Brian Gill/Colorado State University]

    These divergent climate tolerances play crucial roles in how species evolve. Colorado State University research offers new insight into this long-held understanding of species diversity.

    A study led by CSU biologists shows that insect populations in the tropics exhibit a higher number of distinct species than in the Rockies. But the distinctions between those species consist of subtle, genetic differences that aren't readily visible. These are called cryptic species - by the looks of things identical, but actually genetically distinct.

    The study supports a classic theory dating back to the 1960s. The saying goes that "mountain passes are higher in the tropics" - that is, tropical mountain passes are stronger barriers to the dispersal of organisms than temperate-zone passes of equivalent altitudes. That's indeed true, and the CSU researchers have now found that that species differentiation is more subtle - cryptic - than previously understood.

    The study, published in >Proceedings of the Royal Society London B - Biological Sciences will be featured on the journal's printed cover. The lead author is Brian Gill, a graduate student co-advised by Chris Funk in the College of Natural Sciences' Department of Biology and Boris Kondratieff in the College of Agricultural Sciences' Department of Bioagricultural Sciences and Pest Management. Gill led a field team that traversed watersheds in the wilds of Colorado's Rocky Mountains and in the remote Ecuadorean Andes to collect and analyze thousands of mayflies at comparable elevations. Mayflies are common aquatic insects that play key roles in stream food webs and other ecological processes.

    Comparing mayfly specimens between the Rockies and the Andes, the researchers identified higher species richness in Ecuador than in Colorado - a disparity rooted in high levels of cryptic tropical diversity. They used a genetic analysis called DNA barcoding to parse out these subtle species differences, which would not be apparent using standard taxonomy.

    In fact, by standard taxonomic methods, it would appear that Colorado had a greater abundance of mayfly species. But the subtle, molecular-level differences unveiled by the DNA analyses tipped the scale well in favor of species richness for tropical mayflies.

    "Since there is this high climatic zonation in the tropics and narrow thermal tolerances, there are more opportunities for populations to become divergent and isolated, which is what you need for speciation to happen," Gill explained. By comparison, temperate species and their tolerance to a wider range of conditions leads to more gene flow, which limits the number of distinct species that can evolve.

    "We think our results can contribute to the discussion about species vulnerability and how it varies across the planet," Gill said.

    The next step is to provide better support for latitudinal differences in physiology, and more insight into how species disperse. For those follow-up studies, the researchers will continue to work with collaborators at CSU, Cornell University, University of Nebraska Lincoln, Universidad San Francisco de Quito, and Universidad Tecnológica Indoamérica.

    Source: Colorado State University [June 15, 2016]

  • Breaking News: Natural selection, key to evolution, also can impede formation of new species

    Breaking News: Natural selection, key to evolution, also can impede formation of new species

    An intriguing study involving walking stick insects led by the University of Sheffield in England and the University of Colorado Boulder shows how natural selection, the engine of evolution, can also impede the formation of new species.

    Natural selection, key to evolution, also can impede formation of new species
    A new study involving CU-Boulder looks at the role of natural selection on
     three types of stick insect belonging to the species Timema cristinae. 
    The illustration shows how green, striped, and melanistic, or brown 
    varieties have evolved camouflaged appearances matching them 
    to certain areas on two separate species of shrub 
    [Credit: Rosa Marin]

    The team studied a plant-eating stick insect species from California called Timema cristinae known for its cryptic camouflage that allows it to hide from hungry birds, said CU-Boulder Assistant Professor Samuel Flaxman. T. cristinae comes in several different types -- one is green and blends in with the broad green leaves of a particular shrub species, while a second green variant sports a white, vertical stripe that helps disguise it on a different species of shrub with narrow, needle-like leaves.

    While Darwinian natural selection has begun pushing the two green forms of walking sticks down separate paths that could lead to the formation of two new species, the team found that a third melanistic, or brown variation of T. cristinae appears to be thwarting the process, said Flaxman. The brown version is known to successfully camouflage itself among the stems of both shrub species inhabited by its green brethren, he said.

    Using field investigations, laboratory genetics, modern genome sequencing and computer simulations, the team concluded the brown version of T. cristinae is shuttling enough genes between the green stick insects living on different shrubs to prevent strong divergent adaptation and speciation. The brown variant of the walking stick species also is favored by natural selection because it has a slight advantage in mate selection and a stronger resistance to fungal infections than its green counterparts.

    "This is one of the best demonstrations we know of regarding the counteractive effects of natural selection on speciation," said Flaxman of CU-Boulder's Department of Ecology and Evolutionary Biology, second author on the new study. "We show how the brown population essentially carries genes back and forth between the green populations, acting as a genetic bridge that causes a slowdown in divergence."

    A paper on the subject appeared in a recent issue of the journal Current Biology. Other study co-authors were from the University of Sheffield, Royal Holloway University of London, Utah State University, the University of Nevada, Reno and the University of Lausanne in Switzerland.

    "This movement of genes between environments slows down the genetic divergence of these stick insect populations, impeding the formation of new species," said Aaron Comeault, a former CU-Boulder graduate student and lead study author who conducted the research while at the University of Sheffield. Comeault is now a postdoctoral researcher at the University of North Carolina at Chapel Hill.

    The new results underscore how combining natural history and cutting-edge genetics can help researchers gain a better understanding of how evolution operates in nature. It also shows how natural selection can sometimes promote but other times hinder the formation of new species, according to the research team.

    Walking sticks are one of nature's oddest insect groups and range in size from the half-inch long T. cristinae to species in Borneo and Vietnam that are more than a foot long. Most walking sticks rely on plant mimicry to protect them from predators.

    Source: University of Colorado at Boulder [August 06, 2015]

  • Environment: Not so crowded house? New findings on global species richness

    Environment: Not so crowded house? New findings on global species richness

    Planet Earth may contain millions fewer species than previously thought and estimates are converging, according to research led by Griffith University.

    Not so crowded house? New findings on global species richness
    The study estimates there are 16 million fewer types of beetles 
    (examples pictured at the Natural History Museum) and 30 million 
    fewer types of terrestrial arthropods than calculated in 1980s 
    [Credit: The Natural History Museum]

    In a paper published by the journal Proceedings of the National Academy of Sciences (PNAS), Professor Nigel Stork of Griffith’s Environmental Futures Research Institute reveals findings that narrow global species estimates for beetles, insects and terrestrial arthropods.

    The research features an entirely new method of species calculation derived from samples of beetles from the comprehensive collection at London’s Natural History Museum.

    “It has been said we don’t know to the nearest order of magnitude just how many species with which we share the planet. Some say it could be as low as two million; others suggest up to 100 million,” says Professor Stork.

    “By narrowing down how many species exist within the largest group – the insects and other arthropods — we are now in a position to try to improve estimates for all species, including plants, fungi and vertebrates.

    “Understanding how many species there are and how many there might have been is critical to understanding how much humans have impacted biodiversity and whether we are at the start of, or even in the middle of, an extinction crisis.”

    About 25 per cent of all species that have been described are beetles. However, when combined with other insects the figure climbs to more than half of all described and named species on Earth.

    New method of estimation

    For this reason, Professor Stork and his colleagues focused on asking how many species of beetles and insects there actually are, in the process applying a new method of estimation arising from a tendency for larger species of British beetles to be described before smaller species.

    “Because of the global spread of major beetle lineages, we made the assumption that the size distribution of the very well known British beetles might be similar to that of beetles worldwide,” says Professor Stork.

    “So, if we could get a measurement of the body sizes of the beetles from around the world, we might be able to plot where these fitted in time against the British beetles.”

    After measuring a sample from the Natural History Museum’s worldwide collection of beetles, Professor Stork compared the mean body size with the changing body sizes of British beetles to reveal that roughly 10 per cent of the world’s beetles have been named and described.

    This figure sheds intriguing light on previous estimates of global species richness.

    Not so crowded house? New findings on global species richness
    Professor Nigel Stork [Credit: Griffith University]

    In the 1980s, there were just two methods of estimating species. In the case of beetles, these gave a mean of 17.5 million species and a range of 4.9-40.7 million. For all terrestrial arthropods, the mean was 36.8 million and a range of 7-80 million.

    However, the new research shows that four current methods of estimation – dating from 2001 onwards — suggest much lower figures, namely a mean of 1.5 million for beetles (range 0.9-2.1 million) and 6.8 million for terrestrial arthropods (range 5.9-7.8 million).

    “While all methods of estimating global species richness make assumptions, what is important here is that four largely unrelated methods, including the new body size method, produce similar estimates,” says Professor Stork.

    “With estimates converging in this way, this suggests we are closer to finding the real numbers than before.

    “It also means we can improve regional species richness. For Australian fauna and flora, for example, we should be able to make better estimates of just how many species there are and which groups need more taxonomic attention.”

    Diversity of life

    Professor Ian Owens, Director of Science at the Natural History Museum, says this research is a great example of how natural history collections support high-impact scientific research that addresses challenging questions such as the diversity of life.

    “The Natural History Museum’s beetle collection is one of the most important and extensive in the world, so I’m delighted that it has played such a fundamental part in this study that uses a novel approach to estimating how many species of beetle exist,” says Professor Owens.

    “The results are very exciting and are a big step forward to establishing a baseline for biodiversity.”

    Meanwhile, co-author of the PNAS paper — the University of Melbourne’s Associate Professor Andrew Hamilton – says efforts to come up with new or modified ways of resolving how many species exist are beginning to prove fruitful.

    Professor Stork says the research has important conservation ramifications.

    “Success in planning for conservation and adopting remedial management actions can only be achieved if we know what species there are, how many need protection and where,” he says. “Otherwise, we have no baseline against which to measure our successes.

    “Furthermore, it is arguably not only the final number of species that is important, but what we discover about biodiversity in the process.

    “The degree to which we can or cannot accurately estimate the number of species or the scale of organismal diversity on Earth is a measure of our ignorance in understanding the ecological and evolutionary forces that create and maintain the biodiversity on our planet.

    “Attacking this question also drives scientific enquiry and is of public interest. Society expects science to know what species exist on Earth, as it expects science to discover nuclear particles and molecules.

    “These discoveries open doors to more utilitarian interests.”

    Source: Griffith University [June 02, 2015]