The Great London [Search results for Astrobiology

  • Astronomy: Proxima b is in host star's habitable zone, but could it really be habitable?

    Astronomy: Proxima b is in host star's habitable zone, but could it really be habitable?

    The world's attention is now on Proxima Centauri b, a possibly Earth-like planet orbiting the closest star, 4.22 light-years away. The planet's orbit is just right to allow liquid water on its surface, needed for life. But could it in fact be habitable?

    Proxima b is in host star's habitable zone, but could it really be habitable?
    Artist’s impression of the planet orbiting the red dwarf star Proxima Centauri [Credit: ESO]

    If life is possible there, the planet evolved very different than Earth, say researchers at the University of Washington-based Virtual Planetary Laboratory (VPL) where astronomers, geophysicists, climatologists, evolutionary biologists and others team to study how distant planets might host life.

    Astronomers at Queen Mary University in London have announced discovery of Proxima Centauri b, a planet orbiting close to a star 4.22 light-years away. The find has been called "the biggest exoplanet discovery since the discovery of exoplanets."

    Rory Barnes, UW research assistant professor of astronomy, published a discussion about the discovery at palereddot.org, a website dedicated to the search for life around Proxima Centauri. His essay describes research underway through the UW planetary lab -- part of the NASA Astrobiology Institute -- to answer the question, is life possible on this world?

    "The short answer is, it's complicated," Barnes writes. "Our observations are few, and what we do know allows for a dizzying array of possibilities" -- and almost as many questions.

    The Virtual Planetary Laboratory is directed by Victoria Meadows, UW professor of astronomy. UW-affiliated researchers include Giada Arney, Edward Schwieterman and Rodrigo Luger. Using computer models, the researchers studied clues from the orbits of the planet, its system, its host star and apparent companion stars Alpha Centauri A and B -- plus what is known of stellar evolution to begin evaluating Proxima b's chances.

    Relatively little is known about Proxima:

    • It's at least as massive as Earth and may be several times more massive, and its "year" -- the time it takes to orbit its star -- is only 11 days

    • Its star is only 12 percent as massive as our sun and much dimmer (so its habitable zone, allowing liquid water on the surface, is much closer in) and the planet is 25 times closer in than Earth is to our sun

    • The star may form a third part of the Alpha Centauri binary star system, separated by a distance of 15,000 "astronomical units," which could affect the planet's orbit and history

    • The new data hint at the existence of a second planet in the system with an orbital period near 200 days, but this has not been proven

    Perhaps the biggest obstacle to life on the planet, Barnes writes, is the brightness of its host star. Proxima Centauri, a red dwarf star, is comparatively dim, but wasn't always so.

    "Proxima's brightness evolution has been slow and complicated," Barnes writes. "Stellar evolution models all predict that for the first one billion years Proxima slowly dimmed to its current brightness, which implies that for about the first quarter of a billion years, planet b's surface would have been too hot for Earth-like conditions."

    Barnes notes that he and UW graduate student Rodrigo Luger recently showed that had modern Earth been in such a situation, "it would have become a Venus-like world, in a runaway greenhouse state that can destroy all of the planet's primordial water," thus extinguishing any chance for life.

    Next come a host of questions about the planet's makeup, location and history, and the team's work toward discerning answers.

    • Is the planet "rocky" like Earth? Most orbits simulated by the planetary lab suggest it could be -- and thus can host water in liquid form, a prerequisite for life

    • Where did it form, and was there water? Whether it formed in place or farther from its star, where ice is more likely, VPL researchers believe it is "entirely possible" Proxima b could be water-rich, though they are not certain.

    • Did it start out as a hydrogen-enveloped Neptune-like planet and then lose its hydrogen to become Earth-like? VPL research shows this is indeed possible, and could be a viable pathway to habitability

    • Proxima Centauri flares more often than our sun; might such flares have long-since burned away atmospheric ozone that might protect the surface and any life? This is possible, though a strong magnetic field, as Earth has, could protect the surface.

    Also, any life under even a few meters of liquid water would be protected from radiation.

    Another concern is that the planet might be tidally locked, meaning one side permanently faces its star, as the moon does Earth. Astronomers long thought this to mean a world could not support life, but now believe planetwide atmospheric winds would transport heat around the planet.

    "These questions are central to unlocking Proxima's potential habitability and determining if our nearest galactic neighbor is an inhospitable wasteland, an inhabited planet, or a future home for humanity," Barnes writes.

    Planetary laboratory researchers also are developing techniques to determine whether Proxima b's atmosphere is amenable to life.

    "Nearly all the components of an atmosphere imprint their presence in a spectrum (of light)," Barnes writes. "So with our knowledge of the possible histories of this planet, we can begin to develop instruments and plan observations that pinpoint the critical differences."

    At high enough pressures, he notes, oxygen molecules can momentarily bind to each other to produce an observable feature in the light spectrum.

    "Crucially, the pressures required to be detectable are large enough to discriminate between a planet with too much oxygen, and one with just the right amount for life.

    As we learn more about the planet and the system, we can build a library of possible spectra from which to quantitatively determine how likely it is that life exists on planet b."

    Our own sun is expected to burn out in about 4 billion years, but Proxima Centauri has a much better forecast, perhaps burning for 4 trillion years longer.

    "If Proxima b is habitable, then it might be an ideal place to move. Perhaps we have just discovered a future home for humanity. But in order to know for sure, we must make more observations, run many more computer simulations and, hopefully, send probes to perform the first direct reconnaissance of an exoplanet," Barnes writes. "The challenges are huge, but Proxima b offers a bounty of possibilities that fills me with wonder."

    Proxima Centauri b may be the first exoplanet to be directly characterized by powerful ground- and space-based telescopes planned for the future, and its atmosphere spectroscopically probed for active biology. The research was funded by the NASA Astrobiology Institute. "Whether habitable or not," Barnes concludes, "Proxima Centauri b offers a new glimpse into how the planets and life fit into our universe."

    Author: Peter Kelley | Source: University of Washington [August 30, 2016]

  • Space Exploration: Scientists identify mineral that destroys organic compounds, with implications for Mars Curiosity Mission

    Space Exploration: Scientists identify mineral that destroys organic compounds, with implications for Mars Curiosity Mission

    Scientists have discovered that the mineral jarosite breaks down organic compounds when it is flash-heated, with implications for Mars research.

    Scientists identify mineral that destroys organic compounds, with implications for Mars Curiosity Mission
    Curiosity self-portrait during drilling aim [Credit: NASA/JPL-Caltech/MSSS]

    Jarosite is an iron sulphate and it is one of several minerals that NASA’s Curiosity Mission is searching for, as its presence could indicate ancient habitable environments, which may have once hosted life on the red planet.

    In a new study published today in the journal Astrobiology, researchers from Imperial College London and the Natural History Museum replicated a technique that one of the Curiosity Rover’s on-board instruments is using to analyse soil samples, in its quest to find organic compounds. They tested a combination of jarosite and organic compounds. They discovered that the instrument’s technique -which uses intense bursts of heat called flash-heating – broke down jarosite into sulphur dioxide and oxygen, with the oxygen then destroying the organic compounds, leaving no trace of it behind.

    The concern is that if jarosite is present in soil samples that Curiosity analyses, researchers may not be able to detect it because both the jarosite and any organic compounds could be destroyed by the flash-heating process.

    In 2014, Professor Mark Sephton, co-author of today’s study, investigated the mineral perchlorate. This mineral also causes problems for flash-heating experiments as it breaks down to give off oxygen and chlorine gas, which in turn react with any organic compounds, breaking them down into carbon dioxide and water. Professor Sephton showed that though perchlorate was problematic, scientists could potentially use the carbon dioxide resulting from the experiment to detect the presence of organic compounds in the sample being analysed.

    Professor Sephton, from the Department of Earth Science and Engineering at Imperial College London, said: “The destructive properties of some iron sulphates and perchlorate to organic matter may explain why current and previous missions have so far offered no conclusive evidence of organic matter preserved on Mars’ surface. This is despite the fact that scientists have known from previous studies that organic compounds have been delivered to Mars via comets, meteorites and interplanetary dust throughout its history.”

    Scientists identify mineral that destroys organic compounds, with implications for Mars Curiosity Mission
    Jarosite on quartz [Credit: Dave Dyet http://www.dyet.com]

    To make Curiosity’s search for signs of life more effective, the team are now exploring how Curiosity might be able to compensate for the impact of these minerals on the search for organic compounds. Their work could have important implications for both the Curiosity mission and also the upcoming European-led ExoMars 2018 Rover mission, which will be drilling for subsurface samples of the red planet and using the same flash-heating method to look for evidence of past or present alien life.

    James Lewis, co-author of the study from the Department of Earth Science and Engineering at Imperial College London, added: “Our study is helping us to see that if jarosite is detected then it is clear that flash-heating experiments looking for organic compounds may not be completely successful. However, the problem is that jarosite is evidence of systems that might have supported life, so it is not a mineral that scientists can completely avoid in their analysis of soils on Mars. We hope our study will help scientists with interpreting Mars data and assist them to sift through the huge amount of excellent data that Curiosity is currently generating to find signs that Mars was once able to sustain life.”

    On Earth, iron sulphate minerals like jarosite form in the harsh acidic waters flowing out of sulphur rich rocks. Despite the adverse conditions, these waters are a habitat for bacteria that use these dissolved sulphate ions. This makes these minerals of great interest to scientists studying Mars, as their presence on the red planet provide evidence that acidic liquid water was present at the same time the minerals formed, which could have provided an environment favourable for harbouring ancient microbial Martian life.

    On board Curiosity, the Sample Analysis at Mars (SAM) instrument analyses soil samples for evidence of organic compounds by progressively heating samples up to around 1000 C, which releases gases. These gases can then be analysed by techniques called gas chromatography and mass spectrometry, which can identify molecules in the gas and see if any organic compounds are present. It is these SAM instrument experiments that the researchers behind today’s study replicated with jarosite and organic compounds.

    The researchers stress that not all sulphates break down to react with organic compounds. For example, those containing calcium and magnesium would not break down until extremely high temperatures were reached during the analysis, and therefore would not affect any organic compounds present.

    The team suggest that if jarosite is found in samples on Mars, then it may be possible for Curiosity’s SAM instrument to distinguish a spike in carbon dioxide level, which, as Professor Sephton has shown previously with perchlorate, would act as an indicator that organic material is present and being broken down by the heating process.

    The next step will see the researchers using synthetic jarosite in their experiments, which will enable a cleaner decomposition process to occur when the mineral is flash-heated. This will allow for more precise quantitative measurements to be taken when the oxygen is being released. Ultimately, they hope this will enable more precise calculations to be carried out on Mars mineral samples to find ways in which Curiosity can identify the presence of these mineral to mitigate their impact on organic matter.

    The jarosite samples used in the experiments in the study were collected from Brownsea Island in Dorset, with the permission and assistance from the National Trust.

    Source: Imperial College London [February 19, 2015]

  • Origin of Life: Icy comets serve as storks for life on Earth

    Origin of Life: Icy comets serve as storks for life on Earth

    Early Earth was an inhospitable place where the planet was often bombarded by comets and other large astrophysical bodies.

    Icy comets serve as storks for life on Earth
    This simulation depicts a comet hitting the young Earth, generating the amino acids
     necessary for life [Credit: Matthew Genge/Imperial College London]

    Some of those comets contained complex prebiotic materials, such as amino acids and peptides (chains of amino acids), which are some of the most basic building blocks of life on Earth.

    “The survivability of these compounds under impact conditions is mostly unknown,” said Lawrence Livermore’s Nir Goldman, who recently received a NASA grant to continue his astrobiology research. “Our research hopes to answer these questions and give an indication for what types of potentially life-building compounds would be produced under these conditions.”

    Basically, Goldman is trying to figure out if life on Earth really did come from out of this world.

    Goldman’s early research found that the impact of icy comets crashing into Earth billions of years ago could have produced a variety of small prebiotic or life-building compounds. His work using quantum simulations predicted that the simple molecules found in comets (such as water, ammonia, methanol and carbon dioxide) could have supplied the raw materials, and the impact with early Earth would have yielded an abundant supply of energy to drive the synthesis of compounds like protein forming amino acids. In later work, researchers from Imperial College in London and University of Kent conducted a series of experiments very similar to Goldman’s simulations in which a projectile was fired using a light gas gun into a typical cometary ice mixture. The result: Several different types of amino acids formed.

    “Impact events could have not only delivered prebiotic precursors to the primitive planet, but the sudden increase in pressure and temperature from the impact itself was likely a driving factor in synthesizing their assembly into these primary structures,” Goldman said.

    Specifically, this new $500,000 grant will fund quantum simulation studies to understand aqueous mixtures of pre-formed amino acids under impact conditions. Goldman’s current efforts will extend his previous work by looking at one step higher in complexity, where extreme pressures and temperatures from impact could induce the formation of more intricate chemical structures like peptide chains or simple proteins.

    “Large astrophysical bodies such as comets likely already contain more complex prebiotic materials, like amino acids. It’s possible that pre-existing amino acids would have experienced additional impacts during periods of heavy bombardment on early Earth,” Goldman said. “Our quantum simulations hope to help answer these questions, and to give an indication as to what set of thermodynamic conditions promotes their assembly into larger structures.”

    How and when prebiotic organic material appeared on early Earth has been debated for close to 60 years, starting with the seminal Miller-Urey experiments, which showed that amino acids could be produced in aqueous mixtures subjected to electrical discharges, simulating lightning on early Earth.

    Large bodies from space are carriers of prebiotic materials. Previous analysis of dust samples from comet Wild 2 has shown the presence of the amino acid glycine in the captured material. In addition, dipeptides (i.e., an amino acid dimer) likely exist in interstellar ices. Assuming survival upon delivery to Earth, these could have acted as catalysts in the formation of a number of prebiotic compounds, including sugars and enzymes.

    “Our predictions will help spur future collaboration with experimental groups to characterize the synthesis of primary biomaterials due to exposure to extreme pressures and temperatures,” Goldman said.

    Source: Lawrence Livermore National Laboratory [July 07, 2015]

  1. Making heads or tails of Ancient Greece
  2. Johns Hopkins opens new museum housing archaeological collection
  3. American history museum sells more than 2,000 items, reviving ethics debate
  4. Princesses of the Mediterranean in the Dawn of History on show in Athens
  5. Archaeological history of Syria displayed in 200 artifacts at Daraa Museum