The Great London [Search results for Dinosaurs

  • Fossils: Stegosaurus bite strength revealed

    Fossils: Stegosaurus bite strength revealed

    The first detailed study of a Stegosaurus skull shows that the dinosaur had a stronger bite than suspected, enabling it to eat a wider range of plants than other plant-eating dinosaurs with similarly shaped skulls.

    Stegosaurus bite strength revealed
    1901 life restoration of S. ungulatus by Charles R. Knight with paired dorsal plates and eight tail spikes 
    [Credit: Public Domain]

    A team of scientists from Bristol, London, Manchester and University of Birmingham compared the skull of 'Sophie', the Natural History Museum's new Stegosaurus specimen, with two other dinosaurs, Plateosaurus and Erlikosaurus, which shared similar skull characteristics. Computer modelling at the University of Bristol showed that, despite looking very similar, the dinosaurs had different biting abilities.

    Although the three dinosaurs existed in different time periods and locations and had very differently shaped bodies, all three had similar-looking skulls: a large low snout, feeble peg-shaped teeth, and a scissor-like jaw action only capable of moving up and down. All three ate mainly or exclusively plants.

    Until now, it has been assumed that the dinosaurs probably had similar biting abilities and therefore ate similar types of plants. But the research reveals that it can be a trap to assume that because a set of dinosaurs shared a set of similar features, they all operated in the same way – function does not necessarily follow form.

    As Prof. Paul Barrett, Merit Researcher at The Natural History Museum explains: 'Our key finding really surprised us: we expected that many of these dinosaur herbivores would have skulls that worked in broadly similar ways. Instead we found that even though the skulls were fairly similar to each other in overall shape, the way they worked during biting was substantially different in each case.'

    Stegosaurus bite strength revealed
    Digital skull models of Erlikosaurus andrewsi, Stegosaurus stenops, and Plateosaurus engelhardti (from left to right) 
    [Credit: Stephan Lautenschlager]

    Stegosaurus lived around 150 million years ago and needed to eat a lot of plants to sustain its large size. As grasses did not exist then, it would have fed on plants such as ferns and horsetails. However the research indicates that it had a much higher bite force than anyone had suspected, enabling it to a wider range of plants than previously thought.

    As Barrett, leader of the research team, comments: 'Far from being feeble, as usually thought, Stegosaurus actually had a bite force within the range of living herbivorous mammals, such as sheep and cows.'

    This wider range of plants means that scientists need to reconsider how Stegosaurus fitted into its ecological niche. For example it may have had a role in spreading the seeds of cycads – woody ever green plants that were abundant in the time of the dinosaurs and whose seeds are contained in large cones.

    Dr David Button, from the University of Birmingham's School of Geography, Earth and Environmental Sciences, said: 'The extra information provided by computing modelling is invaluable. Although we can tell roughly what a dinosaur ate from the shape of its teeth and jaws, the differences highlighted by this study indicate that the biology and ecology of these animals is more complex than we previously thought. As we study the lives of dinosaurs in greater detail, they continue to surprise us.'

    Lead author Dr Stephan Lautenschlager, a post-doctoral researcher at the University of Bristol's School of Earth Sciences, employed digital models and computer simulations to analyse the dinosaurs' bites, using data from 3D scans of the skulls and lower jaws. He used engineering software to give the skulls the material properties that would match as closely as possible to the real thing, for example, using data on crocodile teeth to model those of the dinosaurs. By attaching muscles to the models, he was able to examine the forces that the jaws could produce and the subsequent stresses on the skulls.

    As computer power increases and software becomes more available, Lautenschlager thinks that we will see more modelling used in dinosaur research: 'Using computer modelling techniques, we were able to reconstruct muscle and bite forces very accurately for the different dinosaurs in our study. As a result, these methods give us new and detailed insights into dinosaur biology – something that would not have been several years ago.'

    The findings are published in >Nature Scientific Reports.

    Source: University of Birmingham [May 20, 2016]

  • Mongolia: First demonstration of sexual selection in dinosaurs identified

    Mongolia: First demonstration of sexual selection in dinosaurs identified

    Large ornamental structures in dinosaurs, such as horns and head crests are likely to have been used in sexual displays and to assert social dominance, according to a new analysis of Protoceratops carried out by scientists at Queen Mary University of London (QMUL). This is the first time scientists have linked the function of anatomy to sexual selection in dinosaurs.

    First demonstration of sexual selection in dinosaurs identified
    Life restoration of adult Protoceratops andrewsi in the foreground engaging 
    in speculative display postures. Non-mature animals can be seen 
    in the background [Credit: Rebecca Gelernter/QMUL]

    Protoceratops had a large bony frill that extended from the back of the head over the neck. Study of fossils aged from babies to adults revealed the adults to have disproportionately larger frills in relation to their size. The research, published in the journal >Palaeontologia Electronica, shows that the frill was absent in juveniles and suddenly increased in size as the animals reached maturity suggesting that its function is linked to sexual selection.

    This suggests the frill might have been used to attract suitable mates by showing off their best attributes or helping them assert the most dominant position in social interactions.

    First demonstration of sexual selection in dinosaurs identified
    Protoceratops ornamental structures were disproportionately large in mature animals, compared to younger specimens, 
    giving the scientists the first direct evidence linking the function of an anatomical feature to sexual selection 
    in dinosaurs [Credit: Richard T. Nowitz/Corbis]

    Dr David Hone, lecturer in Zoology from QMUL's School of Biological and Chemical Sciences, said: "Palaeontologists have long suspected that many of the strange features we see in dinosaurs were linked to sexual display and social dominance but this is very hard to show. The growth pattern we see in Protoceratops matches that seen for signalling structures in numerous different living species and forms a coherent pattern from very young animals right through to large adults."

    The researchers assessed the change in length and width of the frill over four life stages: hatchling babies, young animals, near-adults, and adults. Not only did the frill change in size but it also changed in shape, becoming proportionally wider as the dinosaur became older.

    First demonstration of sexual selection in dinosaurs identified
    Dr David Hone, a lecturer in zoology at Queen Mary University of London (QMUL), said the role of these elaborate 
    features in mating had long been suspected, but had been impossible to prove. Triceratops, a later beaked 
    dinosaur also had ornate facial features [Credit: Mark Stevenson/Stocktrek Images/Corbis]

    Dr Rob Knell, Reader in Evolutionary Ecology, also from QMUL's School of Biological and Chemical Sciences, said: "Biologists are increasingly realising that sexual selection is a massively important force in shaping biodiversity both now and in the past. Not only does sexual selection account for most of the stranger, prettier and more impressive features that we see in the animal kingdom, it also seems to play a part in determining how new species arise, and there is increasing evidence that it also has effects on extinction rates and on the ways by which animals are able to adapt to changing environments."

    The research formed part of current postgraduate student and QMUL graduate Dylan Wood's undergraduate thesis, which looked at sexual selection in extinct species.

    First demonstration of sexual selection in dinosaurs identified
    Protoceratops is a member of the ceratopisian group of beaked herbivorous dinosaurs, which includes the familiar and 
    much larger three-horned Triceratops[Credit: Kevin Schafer/Corbis]

    There are numerous, well-preserved specimens of ceratopisian dinosaurs of various sizes and ages making them a good groups to analyse. The researchers analysed 37 specimens of Protoceratops from fossils found in the Djadochta Formation in the Gobi desert and from previous published research. Protoceratops was a small-horned dinosaur that was similar in size to a sheep and was around 2m in total length from snout to tail tip.

    Source: Queen Mary, University of London [January 13, 2016]

  • Fossils: Long-necked dino species discovered in Australia

    Fossils: Long-necked dino species discovered in Australia

    The Australian Age of Dinosaurs Museum today announced the naming of Savannasaurus elliottorum, a new genus and species of dinosaur from western Queensland, Australia. The bones come from the Winton Formation, a geological deposit approximately 95 million years old.

    Long-necked dino species discovered in Australia
    >An artist's impression of the Savannasaurus elliottorum [Credit: Australian Age of Dinosaurs 
    >Museum of Natural History]

    Savannasaurus was discovered by David Elliott, co-founder of the Australian Age of Dinosaurs Museum, while mustering sheep in early 2005. As Elliott recalled yesterday, "I was nearly home with the mob -- only about a kilometre from the yards -- when I spotted a small pile of fossil bone fragments on the ground. I was particularly excited at the time as there were two pieces of a relatively small limb bone and I was hoping it might be a meat-eating theropod dinosaur." Mr Elliott returned to the site later that day to collect the bone fragments with his wife Judy, who 'clicked' two pieces together to reveal a complete toe bone from a plant-eating sauropod. The Elliotts marked the site and made arrangements to hold a dig later that year.

    The site was excavated in September 2005 by a joint Australian Age of Dinosaurs (AAOD) Museum and Queensland Museum team and 17 pallets of bones encased in rock were recovered. After almost ten years of painstaking work by staff and volunteers at the AAOD Museum, the hard siltstone concretion around the bones was finally removed to reveal one of the most complete sauropod dinosaur skeletons ever found in Australia. More excitingly, it belonged to a completely new type of dinosaur.

    The new discovery was nicknamed Wade in honour of prominent Australian palaeontologist Dr Mary Wade. "Mary was a very close friend of ours and she passed away while we were digging at the site," said Mr Elliott. "We couldn't think of a better way to honour her than to name the new dinosaur after her."

    Long-necked dino species discovered in Australia
    The dinosaur dig site in Winton where the bones have been painstakingly unearthed> 
    >[Credit: Australian Age of Dinosaurs Museum of Natural History]

    "Before today we have only been able to refer to this dinosaur by its nickname," said Dr Stephen Poropat, Research Associate at the AAOD Museum and lead author of the study. "Now that our study is published we can refer to Wade by its formal name, Savannasaurus elliottorum," Dr Poropat said. "The name references the savannah country of western Queensland in which it was found, and honours the Elliott family for their ongoing commitment to Australian palaeontology."

    In the same publication, Dr Poropat and colleagues announced the first sauropod skull ever found in Australia. This skull, and the partial skeleton with which it was associated, has been assigned to Diamantinasaurus matildae -- a sauropod dinosaur named in 2009 on the basis of its nickname Matilda. "This new Diamantinasaurus specimen has helped to fill several gaps in our knowledge of this dinosaur's skeletal anatomy," said Poropat. "The braincase in particular has allowed us to refine Diamantinasaurus' position on the sauropod family tree."

    Dr Poropat collaborated with British sauropod experts Dr Philip Mannion (Imperial College, London) and Professor Paul Upchurch (University College, London), among others, to work out the position of Savannasaurus (and refine that of Diamantinasaurus) on the sauropod family tree. "Both Savannasaurus and Diamantinasaurus belong to a group of sauropods called titanosaurs. This group of sauropods includes the largest land-living animals of all time," said Dr Mannion. "Savannasaurus and the new Diamantinasaurus specimen have helped us to demonstrate that titanosaurs were living worldwide by 100 million years ago."

    Long-necked dino species discovered in Australia
    >The fossils make up one of the most complete collection ever found in Australia> 
    >[Credit: Australian Age of Dinosaurs Museum of Natural History]

    Poropat and his colleagues suggest that the arrangement of the continents, and the global climate during the middle part of the Cretaceous Period, enabled titanosaurs to spread worldwide.

    "Australia and South America were connected to Antarctica throughout much of the Cretaceous," said Professor Upchurch. "Ninety-five million years ago, at the time that Savannasaurus was alive, global average temperatures were warmer than they are today. However, it was quite cool at the poles at certain times, which seems to have restricted the movement of sauropods at polar latitudes. We suspect that the ancestor of Savannasaurus was from South America, but that it could not and did not enter Australia until approximately 105 million years ago. At this time global average temperatures increased allowing sauropods to traverse landmasses at polar latitudes."

    Savannasaurus was a medium-sized titanosaur, approximately half the length of a basketball court, with a long neck and a relatively short tail. "With hips at least one metre wide and a huge barrel-like ribcage, Savannasaurus is the most rotund sauropod we have found so far -- even more so than the somewhat hippopotamus-like Diamantinasaurus," said Dr Poropat. "It lived alongside at least two other types of sauropod (Diamantinasaurus and Wintonotitan), as well as other dinosaurs including ornithopods, armoured ankylosaurs, and the carnivorous theropod Australovenator."

    Long-necked dino species discovered in Australia
    >Dr Stephen Poropat from the Australian Age of Dinosaurs Museum of Natural History in Winton, 
    >with five back vertebrae from the newly-discovered Australian dinosaur Savannasaurus elliottorum 
    >[Credit: Judy Elliott/Australian Age of Dinosaurs Museum of Natural History]

    Mr Elliott is relieved that Wade can now join "Matilda" and the other new dinosaur species on display in the Museum's Holotype Room. "That this dinosaur specimen can now be displayed for our visitors is a testament to the efforts of numerous volunteers who have worked at the Museum on the fossils over the past decade," he said. Mr Elliott and Dr Poropat agree that the naming of Savannasaurus, the fourth new species published by the AAOD Museum, is just the tip of the iceberg with respect to the potential for new dinosaur species in western Queensland.

    "The Australian Age of Dinosaurs Museum has a massive collection of dinosaur fossils awaiting preparation and the number of specimens collected is easily outpacing the number being prepared by volunteers and staff in our Laboratory," Mr Elliott said. "The Museum already has the world's largest collection of bones from Australia's biggest dinosaurs and there is enough new material to keep us working for several decades."

    The paper naming the new dinosaur was published in >Scientific Reports.

    Source: Australian Age of Dinosaurs Museum of Natural History [October 20, 2016]

  • Fossils: Scientists explain evolution of some of the largest dinosaurs

    Fossils: Scientists explain evolution of some of the largest dinosaurs

    Scientists from the University of Liverpool have developed computer models of the bodies of sauropod dinosaurs to examine the evolution of their body shape.

    Scientists explain evolution of some of the largest dinosaurs
    An artist’s rendering of the dinosaur Dreadnoughtus 
    [Credit: Jennifer Hall]

    Sauropod dinosaurs include the largest land animals to have ever lived. Some of the more well-known sauropods include Diplodocus, Apatosaurus and Brontosaurus. They are renowned for their extremely long necks, long tails as well as four thick, pillar-like legs and small heads in relation to their body.

    To date, however, there have been only limited attempts to examine how this unique body-plan evolved and how it might be related to their gigantic body size. Dr Karl Bates from the University's Department of Musculoskeletal Biology and his colleagues used three-dimensional computer models reconstructing the bodies of sauropod dinosaurs to analyse how their size, shape and weight-distribution evolved over time.

    Evolutionary history

    Dr Bates found evidence that changes in body shape coincided with major events in sauropod evolutionary history such as the rise of the titanosaurs. The early dinosaurs that sauropods evolved from were small and walked on two legs, with long tails, small chests and small forelimbs. The team estimate that this body shape concentrated their weight close to the hip joint, which would have helped them balance while walking bipedally on their hind legs.

    As sauropods evolved they gradually altered both their size and shape from this ancestral template, becoming not only significantly larger and heavier, but also gaining a proportionally larger chest, forelimbs and in particular a dramatically larger neck.


    >A Giraffatitan model of a Sauropod showing how the centre of mass is moved by> reconstructing the soft tissues differently using the convex hulling approach >[Credit: Dr Peter L Falkingham/Liverpool John Moores University]
    The team's findings show that these changes altered sauropods' weight distribution as they grew in size, gradually shifting from being tail-heavy, two-legged animals to being front-heavy, four-legged animals, such as the large, fully quadrupedal Jurassic sauropods Diplodocus and Apatosaurus.

    The team found that these linked trends in size, body shape and weight distribution did not end with the evolution of fully quadrupedal sauropods. In the Cretaceous period - the last of the three ages of the dinosaurs - many earlier sauropod groups dwindled. In their place, a new and extremely large type of sauropod known as titanosaurs evolved, including the truly massive Argentinosaurus and Dreadnoughtus, among the largest known animals ever to have lived.

    Front heavy

    The team's computer models suggest that in addition to their size, the titanosaurs evolved the most extreme 'front heavy' body shape of all sauropods, as a result of their extremely long necks.

    Dr Bates said: "As a result of devising these models we were able to ascertain that the relative size of sauropods' necks increased gradually over time, leading to animals that were increasingly more front-heavy relative to their ancestors."

    Dr Philip Mannion from Imperial College London, a collaborator in the research, added: "These innovations in body shape might have been key to the success of titanosaurs, which were the only sauropod dinosaurs to survive until the end-Cretaceous mass extinction, 66 million years ago."

    Dr Vivian Allen from the Royal Veterinary College London, who also collaborated in the research, added: "What's important to remember about studies like this is that there is a very high degree of uncertainty about exactly how these animals were put together. While we have good skeletons for many of them, it's difficult to be sure how much meat there was around each of the bones. We have built this uncertainly into our models, ranging each body part from emaciated to borderline obesity, and even using these extremes we still find these solid, trending changes in body proportions over sauropod evolution."

    The paper has been published by the Royal Society Open Science journal.

    Source: University of Liverpool [March 29, 2016]

  • Fossils: Mammal diversity exploded immediately after dinosaur extinction

    Fossils: Mammal diversity exploded immediately after dinosaur extinction

    The diversity of mammals on Earth exploded straight after the dinosaur extinction event, according to UCL researchers. New analysis of the fossil record shows that placental mammals, the group that today includes nearly 5000 species including humans, became more varied in anatomy during the Paleocene epoch - the 10 million years immediately following the event.

    Mammal diversity exploded immediately after dinosaur extinction
    Leptictis [Credit: Dr Thomas Halliday]

    Senior author, Dr Anjali Goswami (UCL Genetics, Evolution & Environment), said: "When dinosaurs went extinct, a lot of competitors and predators of mammals disappeared, meaning that a great deal of the pressure limiting what mammals could do ecologically was removed. They clearly took advantage of that opportunity, as we can see by their rapid increases in body size and ecological diversity. Mammals evolved a greater variety of forms in the first few million years after the dinosaurs went extinct than in the previous 160 million years of mammal evolution under the rule of dinosaurs."

    The Natural Environment Research Council-funded research, published today in the Biological Journal of the Linnean Society, studied the early evolution of placental mammals, the group including elephants, sloths, cats, dolphins and humans. The scientists gained a deeper understanding of how the diversity of the mammals that roamed the Earth before and after the dinosaur extinction changed as a result of that event.

    Placental mammal fossils from this period have been previously overlooked as they were hard to place in the mammal tree of life because they lack many features that help to classify the living groups of placental mammals. Through recent work by the same team at UCL, this issue was resolved by creating a new tree of life for placental mammals, including these early forms, which was described in a study published in Biological Reviews yesterday.

    First author of both papers, Dr Thomas Halliday (UCL Earth Sciences and Genetics, Evolution & Environment), said: "The mass extinction that wiped out the dinosaurs 66 million years ago is traditionally acknowledged as the start of the 'Age of Mammals' because several types of mammal appear for the first time immediately afterwards.

    "Many recent studies suggest that little changed in mammal evolution during the Paleocene but these analyses don't include fossils from that time. When we look at the mammals that were present, we find a burst of evolution into new forms, followed by specialisation that finally resulted in the groups of mammals we see today. The earliest placental mammal fossils appear only a few hundred thousand years after the mass extinction, suggesting the event played a key role in diversification of the mammal group to which we belong."

    The team studied the bones and teeth of 904 placental fossils to measure the anatomical differences between species. This information was used to build an updated tree of life containing 177 species within Eutheria (the group of mammals including all species more closely related to us than to kangaroos) including 94 from the Paleocene - making it the tree with the largest representation from Paleocene mammals to date. The new tree was analysed in time sections from 140 million years ago to present day, revealing the change in the variety of species.

    Three different methods were used by the team to investigate the range and variation of the mammals present and all showed an explosion in mammal diversity after the dinosaur extinction. This is consistent with theories that mammals flourished when dinosaurs were no longer hunting them or competing with them for resources.

    Dr Anjali Goswami (UCL Genetics, Evolution & Environment), added: "Extinctions are obviously terrible for the groups that go extinct, non-avian dinosaurs in this case, but they can create great opportunities for the species that survive, such as placental mammals, and the descendants of dinosaurs: birds."

    Professor Paul Upchurch (UCL Earth Sciences), co-author of the Biological Reviews study, added: "Several previous methodological studies have shown that it is important to include as many species in an evolutionary tree as possible: this generally improves the accuracy of the tree. By producing such a large data set, we hope that our evolutionary tree for Paleocene mammals is more robust and reliable than any of the previous ones. Moreover, such large trees are very useful for future studies of large-scale evolutionary patterns, such as how early placental mammals dispersed across the continents via land bridges that no longer exist today."

    The team are now investigating rates of evolution in these mammals, as well as looking at body size more specifically. Further work will involve building data from DNA into these analyses, to extend these studies to modern mammals.

    Source: University College London [December 21, 2015]

  • Fossils: Mammals evolved faster after dinosaur extinction

    Fossils: Mammals evolved faster after dinosaur extinction

    Our ancestors evolved three times faster in the 10 million years after the extinction of the dinosaurs than in the previous 80 million years, according to UCL researchers.

    Mammals evolved faster after dinosaur extinction
    Late cretaceous dinosaurs [Credit: UCL]

    The team found the speed of evolution of placental mammals -- a group that today includes nearly 5000 species including humans -- was constant before the extinction event but exploded after, resulting in the varied groups of mammals we see today.

    Lead researcher, Dr Thomas Halliday (UCL Genetics, Evolution & Environment), said: "Our ancestors -- the early placental mammals - benefitted from the extinction of non-avian dinosaurs and dwindling numbers of competing groups of mammals. Once the pressure was off, placental mammals suddenly evolved rapidly into new forms.

    "In particular, we found a group called Laurasiatheria quickly increased their body size and ecological diversity, setting them on a path that would result in a modern group containing mammals as diverse as bats, cats, rhinos, whales, cows, pangolins, shrews and hedgehogs."

    The team found that the last common ancestor for all placental mammals lived in the late Cretaceous period, about three million years before the non-avian dinosaurs became extinct 66 million years ago. This date is 20 million years younger than suggestions from previous studies which used molecular data from living mammals and assumed a near-constant rate of evolution.

    In this study, funded by the Natural Environment Research Council and published in >Proceedings B of the Royal Society, the researchers analysed fossils from the Cretaceous to the present day, and used the dates of their occurrence in the fossil record to estimate the timing of divergences based on an updated tree of life. The new tree was released by the same team in 2015 and has the largest representation of Paleocene mammals to date.

    The scientists measured all the small changes in the bones and teeth of 904 placental fossils and mapped the anatomical differences between species on the tree of life. From measuring the number of character changes over time for each branch, they found the average rate of evolution for early placental mammals both before and after the dinosaur extinction event. They compared the average rate of evolution over the geological stages before the extinction and the geological stages after to see what impact it had.

    Senior author, Professor Anjali Goswami (UCL Genetics, Evolution & Environment and UCL Earth Sciences), said: "Our findings refute those of other studies which overlooked the fossils of placental mammals present around the last mass extinction. Using rigorous methods, we've successfully tracked the evolution of early placental mammals and reconstructed how it changed over time. While the rate differed between species, we see a clear and massive spike in the rates of evolution straight after the dinosaurs become extinct, suggesting our ancestors greatly benefitted from the demise of the dinosaurs. The huge impact of the dinosaur extinction on the evolution of our ancestors really shows how important this event was in shaping the modern world."

    Professor Paul Upchurch (UCL Earth Sciences), co-author of the study, added: "Our large and refined data set allows us to build a clearer picture of evolutionary history. We plan on using it to study other large-scale evolutionary patterns such as how early placental mammals dispersed across the continents via land bridges that no longer exist today."

    Source: University College London [June 28, 2016]

  • Italy: Fossil find reveals just how big carnivorous dinosaur may have grown

    Italy: Fossil find reveals just how big carnivorous dinosaur may have grown

    An unidentified fossilised bone in a museum has revealed the size of a fearsome abelisaur and may have solved a hundred-year old puzzle.

    Fossil find reveals just how big carnivorous dinosaur may have grown
    Artist impression of abelisaur [Credit: Imperial College London]

    Alessandro Chiarenza, a PhD student from Imperial College London, last year stumbled across a fossilised femur bone, left forgotten in a drawer, during his visit to the Museum of Geology and Palaeontology in Palermo Italy. He and a colleague Andrea Cau, a researcher from the University of Bologna, got permission from the museum to analyse the femur. They discovered that the bone was from a dinosaur called abelisaur, which roamed the Earth around 95 million years ago during the late Cretaceous period.

    Abelisauridae were a group of predatory, carnivorous dinosaurs, characterised by extremely small forelimbs, a short deep face, small razor sharp teeth, and powerful muscular hind limbs. Scientists suspect they were also covered in fluffy feathers. The abelisaur in today's study would have lived in North Africa, which at that time was a lush savannah criss-crossed by rivers and mangrove swamps. This ancient tropical world would have provided the abelisaur with an ideal habitat for hunting aquatic animals like turtles, crocodiles, large fish and other dinosaurs.

    By studying the bone, the team deduced that this abelisaur may have been nine metres long and weighed between one and two tonnes, making it potentially one of the largest abelisaurs ever found. This is helping researchers to determine the maximum sizes that these dinosaurs may have reached during their peak.

    Alfio Alessandro Chiarenza, co-author of the study from the Department of Earth Science and Engineering at Imperial, said: "Smaller abelisaur fossils have been previously found by palaeontologists, but this find shows how truly huge these flesh eating predators had become. Their appearance may have looked a bit odd as they were probably covered in feathers with tiny, useless forelimbs, but make no mistake they were fearsome killers in their time."

    The fossil originated from a sedimentary outcrop in Morocco called the Kem Kem Beds, which are well known for the unusual abundance of giant predatory dinosaur fossils. This phenomenon is called Stromer's Riddle, in honour the German palaeontologist Ernst Stromer, who first identified this abundance in 1912. Since then scientists have been asking how abelisaurs and five other groupings of predatory dinosaurs could have co-existed in this region at the same time, without hunting each other into extinction.

    Now the researchers in today's study suggest that these predatory dinosaur groups may not have co-existed so closely together. They believe that the harsh and changing geology of the region mixed the fossil fragment records together, destroying its chronological ordering in the Kem Kem beds, and giving the illusion that the abelisaurs and their predatory cousins shared the same terrain at the same time. Similar studies of fossil beds in nearby Tunisia, for example, show that creatures like abelisaurs were inland hunters, while other predators like the fish eating spinosaurs probably lived near mangroves and rivers.

    Chiarenza added: "This fossil find, along with the accumulated wealth of previous studies, is helping to solve the question of whether abelisaurs may have co-existed with a range of other predators in the same region. Rather than sharing the same environment, which the jumbled up fossil records may be leading us to believe, we think these creatures probably lived far away from one another in different types of environments."

    Fossilised femora are useful for palaeontologists to study because they can determine the overall size of the dinosaur. This is because femora are attached to the thigh and tail muscles and have scars, or bumps, which tell palaeontologists where the ligaments and muscles were attached to the bone and how big those muscles and ligaments would have been.

    Andrea Cau, co-author from the University of Bologna, said: "While palaeontologists usually venture to remote and inaccessible locations, like the deserts of Mongolia or the Badlands of Montana, our study shows how museums still play an important role in preserving specimens of primary scientific value, in which sometimes the most unexpected surprises can be discovered. As Stephen Gould, an influential palaeontologist and evolutionary biologist, once said, sometimes the greatest discoveries are made in museum drawers."

    The study is published in the journal Peer J. Chiarenza did the underpinning analysis with Cau while at the University of Bologna.

    The next step will see the team looking for more complete remains from these predatory dinosaurs trying to better understand their environment and evolutionary history.

    Author: Colin Smith | Source: Imperial College London [February 29, 2016]

  • Fossils: Dinosaur fossil investigation unlocks possible soft tissue treasure trove

    Fossils: Dinosaur fossil investigation unlocks possible soft tissue treasure trove

    Scientists have found remnants that have some similarities to red blood cells and collagen fibres in fragments of dinosaur fossils.

    Dinosaur fossil investigation unlocks possible soft tissue treasure trove
    A zoom-in of potential red blood cells inside a fossil fragment that has been sliced 
    open with a focused ion beam [Credit: Imperial College London]

    The team from Imperial College London have detected what look like soft tissue remnants in the fragments of 75 million year old dinosaur fossils even though the fossils are poorly preserved. Scientists have previously only found soft tissue in dinosaur fossils that have been exceptionally well preserved, which are very rare and far fewer in number.

    The researchers suggest their study, published today in Nature Communications, may cause palaeontologists to rethink how fossils are preserved, and may be the first step towards a better understanding of the biology of dinosaurs and the relationships between different species.

    In the study, the team analysed eight fossil fragments that have for more than a century been in the Natural History Museum's Sternberg and Cutler collections.

    The researchers examined part of a fossilised dinosaur claw and identified tiny structures that look ovoid and with an inner denser core. These could potentially be red blood cells although the researchers caution that further evidence would be needed to confirm that the structures do not have another origin. The hope is that if red blood cells can be found in fossilised dinosaur fragments, this could help scientists to understand when dinosaurs evolved a warm blooded, bird-like metabolism.

    In one dinosaur fossil fragment, the team also found structures that looked fibrous and had a banded structure similar to the banding that can be seen in modern day collagen fibres. The structure of collagen varies between different animal groups, providing a type of fingerprint to link related creatures. Further evidence would be needed to definitively conclude that the structures found originate from a preservation of collagen. If verified, the identification of collagen-like structures could in the future provide a new independent line of evidence to show how various dinosaur groups are related to each other.

    Study author Dr Sergio Bertazzo, a Junior Research Fellow from the Department of Materials at Imperial College London, said: "We still need to do more research to confirm what it is that we are imaging in these dinosaur bone fragments, but the ancient tissue structures we have analysed have some similarities to red blood cells and collagen fibres. If we can confirm that our initial observations are correct, then this could yield fresh insights into how these creatures once lived and evolved."

    Study author Dr Susannah Maidment, a Junior Research Fellow from the Department of Earth Science and Engineering at Imperial College London, added: "Our study is helping us to see that preserved soft tissue may be more widespread in dinosaur fossils than we originally thought. Although remnants of soft tissues have previously been discovered in rare, exceptionally preserved fossils, what is particularly exciting about our study is that we have discovered structures reminiscent of blood cells and collagen fibres in scrappy, poorly preserved fossils. This suggests that this sort of soft tissue preservation might be widespread in fossils. Early indications suggest that these poorly preserved fossils may be useful pieces in the dinosaur jigsaw puzzle to help us to understand in more detail how dinosaurs evolved into being warm blooded creatures, and how different dinosaur species were related."

    To carry out their study the team used a range of techniques. The first involved the use of a scanning electron microscopy device to observe the structure, composition and location of the soft tissue inside the dinosaur fossil fragments. The team then used a focused ion beam to slice into the samples and observe the internal structure of the fossils. They also examined the fossils using a transmission electron microscope to detect the fibrous structures.

    Birds are the distant relatives of dinosaurs, so the researchers used an ion mass spectrometer device to compare their ancient soft tissue to a blood sample taken from an Emu. This enabled them to compare and contrast the samples and see that their fossils had some similarities in the organic signatures to the blood cells present in the emu blood sample.

    The next step will see the team carrying out more research to confirm that the structures that they've observed are found in a wider range of fossil samples and also to understand how widespread this sort of soft tissue preservation might be in dinosaur fossils, how far back this type of preservation could go in the fossil records and the reasons why it may have occurred.

    Author: Colin Smith | Source: Imperial College London [June 10, 2015]

  • Palaeontology: Fossilized dinosaur brain tissue identified for the first time

    Palaeontology: Fossilized dinosaur brain tissue identified for the first time

    Researchers have identified the first known example of fossilised brain tissue in a dinosaur from Sussex. The tissues resemble those seen in modern crocodiles and birds.

    Fossilized dinosaur brain tissue identified for the first time
    Image of specimen [Credit: Jamie Hiscocks]

    An unassuming brown pebble, found more than a decade ago by a fossil hunter in Sussex, has been confirmed as the first example of fossilised brain tissue from a dinosaur.

    The fossil, most likely from a species closely related to Iguanodon, displays distinct similarities to the brains of modern-day crocodiles and birds. Meninges -- the tough tissues surrounding the actual brain -- as well as tiny capillaries and portions of adjacent cortical tissues have been preserved as mineralised 'ghosts'.

    The results are reported in a >Special Publication of the Geological Society of London, published in tribute to Professor Martin Brasier of the University of Oxford, who died in 2014. Brasier and Dr David Norman from the University of Cambridge co-ordinated the research into this particular fossil during the years prior to Brasier's untimely death in a road traffic accident.

    The fossilised brain, found by fossil hunter Jamie Hiscocks near Bexhill in Sussex in 2004, is most likely from a species similar to Iguanodon: a large herbivorous dinosaur that lived during the Early Cretaceous Period, about 133 million years ago.

    Fossilized dinosaur brain tissue identified for the first time
    Environmental scanning electron microscopy images of tubular structures on the exterior of the Bexhill iguanodontian 
    cranial endocast and within the outer laminar layer, interpreted here as meningeal blood vessels 
    [Credit: David Norman]

    Finding fossilised soft tissue, especially brain tissue, is very rare, which makes understanding the evolutionary history of such tissue difficult. "The chances of preserving brain tissue are incredibly small, so the discovery of this specimen is astonishing," said co-author Dr Alex Liu of Cambridge's Department of Earth Sciences, who was one of Brasier's PhD students in Oxford at the time that studies of the fossil began.

    According to the researchers, the reason this particular piece of brain tissue has been so well-preserved is that the dinosaur's brain was essentially 'pickled' in a highly acidic and low-oxygen body of water -- similar to a bog or swamp -- shortly after its death. This allowed the soft tissues to become mineralised before they decayed away completely, so that they could be preserved.

    "What we think happened is that this particular dinosaur died in or near a body of water, and its head ended up partially buried in the sediment at the bottom," said Norman. "Since the water had little oxygen and was very acidic, the soft tissues of the brain were likely preserved and cast before the rest of its body was buried in the sediment."

    Working with colleagues from the University of Western Australia, the researchers used scanning electron microscope (SEM) techniques in order to identify the tough membranes, or meninges, that surrounded the brain itself, as well as strands of collagen and blood vessels. Structures that could represent tissues from the brain cortex (its outer layer of neural tissue), interwoven with delicate capillaries, also appear to be present. The structure of the fossilised brain, and in particular that of the meninges, shows similarities with the brains of modern-day descendants of dinosaurs, namely birds and crocodiles.


    In typical reptiles, the brain has the shape of a sausage, surrounded by a dense region of blood vessels and thin-walled vascular chambers (sinuses) that serve as a blood drainage system. The brain itself only takes up about half of the space within the cranial cavity.

    In contrast, the tissue in the fossilised brain appears to have been pressed directly against the skull, raising the possibility that some dinosaurs had large brains which filled much more of the cranial cavity. However, the researchers caution against drawing any conclusions about the intelligence of dinosaurs from this particular fossil, and say that it is most likely that during death and burial the head of this dinosaur became overturned, so that as the brain decayed, gravity caused it to collapse and become pressed against the bony roof of the cavity.

    "As we can't see the lobes of the brain itself, we can't say for sure how big this dinosaur's brain was," said Norman. "Of course, it's entirely possible that dinosaurs had bigger brains than we give them credit for, but we can't tell from this specimen alone. What's truly remarkable is that conditions were just right in order to allow preservation of the brain tissue -- hopefully this is the first of many such discoveries."

    "I have always believed I had something special. I noticed there was something odd about the preservation, and soft tissue preservation did go through my mind. Martin realised its potential significance right at the beginning, but it wasn't until years later that its true significance came to be realised," said paper co-author Jamie Hiscocks, the man who discovered the specimen. "In his initial email to me, Martin asked if I'd ever heard of dinosaur brain cells being preserved in the fossil record. I knew exactly what he was getting at. I was amazed to hear this coming from a world renowned expert like him."

    Source: University of Cambridge [October 27, 2016]

  • Dinosaurs: Scientists carry out 'autopsy' on life-sized T-Rex replica

    Dinosaurs: Scientists carry out 'autopsy' on life-sized T-Rex replica

    With “Jurassic World” hitting theaters next weekend, it seems like everyone’s got “dino fever” these days. This includes the folks at the National Geographic Channel, who are cashing in on the craze with “T. rex Autopsy,” which features a dissection of the world’s first anatomically correct synthetic Tyrannosaurus Rex. Performing the autopsy are a veterinary surgeon and three leading paleontologists, including University of Edinburgh Chancellor’s Fellow Stephen Brusatte.

    Scientists carry out 'autopsy' on life-sized T-Rex replica
    Drs. Brusatte and Herridge examine the T. rex's teeth with a clamp and manual assistance 
    [Credit: National Geographic Channels/Stuart Freedman]

    “I've been studying T. rex for a decade, but all we really have to go by are bones,” Brusatte told FoxNews.com. “Up until now, my mental image of T. rex has been that of a skeleton, of the bones I study. Now my image is of the incredible model that we built for the program.”

    To create the 46–foot long, 880–pound model (the real dinosaurs weighed over 7 tons), England–based special effects house Crawley Creatures consulted some of the world’s leading dinosaur experts, including Brusatte.

    “I think the life-sized model that we built for the show is the single most realistic and accurate dinosaur that has ever been assembled,” he said. “It is based on everything we know about T. rex from fossils, with the unknowns filled in by reasonable inference to living crocs (close dinosaur cousins) and birds (living dinosaurs).”

    The team used latex rubber, polyurethane foam, silicone rubber, polystyrene, and glass reinforced plastic to create the model, along with 34 gallons of fake blood. They had to get a bit more creative when it came to some of the other details. For example, the feces were made from oatmeal, coffee, and synthetic “badger poo.” In total, it took 1,000 man–hours for the effects house to complete the project.


    The four participants weren’t allowed to see the finished product until cameras were rolling at Pinewood Studios in London. Brusatte said that their shocked reactions were completely genuine.

    “I consulted on the model-making process, but I never actually saw the physical model as it was being constructed,” he recalled. “There was a fog machine, and the door opened and we walked through the fog to go face–to–face with this life–sized T. rex corpse. I was speechless. The model is beautiful, accurate, and really nails what I think T. rex looked like in the flesh.”

    Once over the initial shock, the four had to figure out the synthetic creature’s age, sex and cause of death. For the dissection, they were given a variety of instruments, including a chainsaw. This came in handy when a leg had to be removed to figure out the dino’s age. Fun fact — like a tree, the age of a tyrannosaur can be told from the rings in its bones.

    Later, the team had to slice open the belly and through the rib cage to get to the innards inside — a bloody, smelly, and (according to Brusatte) fun process.


    “I would have to say my favorite part was when I was literally able to crawl into the belly of the beast and help remove some of the organs, and then poke around to try to figure out whether it was a boy or girl dinosaur. A ‘he rex’ or a ‘she rex,’ ” he said. “Being inside the belly really drove home how enormous T. rex was.”

    While performing an autopsy on a life-like synthetic Tyrannosaur makes for entertaining and informative television for the viewers at home, what can the researchers get out of it themselves in terms of their research? Can these kinds of autopsies help scientists gain knowledge about dinosaurs in any way?

    “Not really,” Brusatte said, but added that this wasn’t the point of the project.

    “I've spent years of my life studying bones — observing, measuring, photographing, [and] describing them,” he explained. “Bones tell you a lot, but there can be a disconnect between bones and a living animal. Taking part in “T. rex Autopsy,” and cutting up the life-sized model, helped me visualize how a real T. rex all fit together– not only the bones, but the muscles, skin, feathers, internal organs.

    “The gut was a little bigger than I thought, the teeth even more menacing on a fleshed-out skull, the internal organs much more massive than I imagined before. I will carry this image with me forever,” he added.

    “We'll never be able to observe a real T. rex, or ever bring one back through DNA cloning, so I think this model is the closest we're ever going to get,” Brusatte said. “And it's great.”

    T. Rex Autopsy premiered on Sunday 7 June, 8pm on National Geographic Channel.

    Author: Walt Bonner | Source: FoxNews [June 08, 2015]

  • Mexico: Expedition will sample crater left by dinosaur-killing asteroid

    Mexico: Expedition will sample crater left by dinosaur-killing asteroid

    An international research team is formalizing plans to drill nearly 5,000 feet below the seabed to take core samples from the crater of the asteroid that wiped out the dinosaurs.

    Expedition will sample crater left by dinosaur-killing asteroid
    Artist's impression of the Chicxulub asteroid impacting the 
    Yucatan Peninsula as pterodactyls fly in the sky above. 
    Painting by Donald E. Davis [Credit: NASA]

    The group met last week in Merida, Mexico, a city within the nearly 125-mile-wide impact site, to explain the research plans and put out a call for scientists to join the expedition planned for spring 2016. The roughly $10 million in funding for the expedition has been approved and scheduled by the European Consortium for Ocean Research Drilling (ECORD) — part of the International Ocean Discovery Program (IODP) — and the International Continental Scientific Drilling Program (ICDP).

    Dinosaurs and other reptiles ruled the planet for 135 million years. That all changed 65.5 million years ago when a 9-mile-wide asteroid slammed into the Earth, triggering a series of apocalyptic events that killed most large animals and plants, and wiped out the dinosaurs and large marine reptiles. The event set the stage for mammals — and eventually humans — to take over. Yet, we have few geologic samples of the now buried impact crater.

    Sean Gulick, a researcher at The University of Texas at Austin Institute for Geophysics (UTIG), and a team of scientists from the U.K. and Mexico are working to change that. The team is planning to take the first offshore core samples from near the center of the impact crater, which is called Chicxulub after the seaside village on the Yucatán Peninsula near the crater’s center.

    The team, led by Gulick and Joanna Morgan of Imperial College London, will be sampling the crater’s “peak ring” — an enigmatic ring of topographically elevated rocks that surrounds the crater’s center, rises above its floor and has been buried during the past 65.5 million years by sediments.

    Expedition will sample crater left by dinosaur-killing asteroid
    The Chicxulub crater has been filled in by sediments over the millions 
    of years since impact. Using a gravity map, the crater's topological features
     can be visualized. The red and yellow are gravity highs, and green and blue
     are gravity lows. The white dots indicate a network of sinkholes
     called "cenotes,"which were formed as a result 
    of the impact [Credit: NASA]

    A peak ring is a feature that is present in all craters caused by large impacts on rocky planetoids. By sampling the Chicxulub peak ring and analyzing its key features, researchers hope to uncover the impact details that set in motion one of the planet’s most profound extinctions, while also shedding light on the mechanisms of large impacts on Earth and on other rocky planets.

    “What are the peaks made of? And what can they tell us about the fundamental processes of impacts, which is this dominant planetary resurfacing phenomena?” said Gulick, who is also a research associate professor at the UT Jackson School of Geosciences. UTIG is a research unit of the Jackson School.

    The researchers are also interested in examining traces of life that may have lived inside the peak ring’s rocks. Density readings of the rocks indicate that they probably are heavily broken and porous — features that may have served as protected microenvironments for exotic life that could have thrived in the hot, chemically enriched environment of the crater site after impact. Additionally, the earliest recovery of marine life should be recorded within the sediments that filled in the crater in the millions of years after the impact.

    “The sediments that filled in the [crater] should have the record for organisms living on the sea floor and in the water that were there for the first recovery after the mass extinction event,” Gulick said. “The hope is we can watch life come back.”

    The expedition will last for two months and involve penetrating nearly 5,000 feet beneath the seabed from an offshore platform. The core will be the first complete sample of the rock layers from near the crater’s center.

    Once extracted, the core will be shipped to Germany and split in two. Half will be immediately analyzed by an international team of scientists from the U.S., U.K., Mexico and other nations, and half will be saved at a core repository at Texas A&M University for future research needs by the international community.

    The team also includes researchers from the National Autonomous University of Mexico (UNAM) and Centro de Investigación Científica de Yucatán (CICY). Scientists interested in joining the mission must apply by May 8, 2015. For more information on the mission and the application process, see the European Consortium for Ocean Research Drilling’s call for applications.

    Source: University of Texas at Austin [April 06, 2015]

  • Fossils: Cold snap: Climate cooling and sea-level changes caused crocodilian retreat

    Fossils: Cold snap: Climate cooling and sea-level changes caused crocodilian retreat

    Fluctuating sea levels and global cooling caused a significant decline in the number of crocodylian species over millions of years, according to new research.

    Cold snap: Climate cooling and sea-level changes caused crocodilian retreat
    Image of Sarcosuchus [Credit: Imperial College London 
    and Robert Nicholls]

    Crocodylians include present-day species of crocodiles, alligators, caimans and gavials and their extinct ancestors. Crocodylians first appeared in the Late Cretaceous period, approximately 85 million years ago, and the 250 million year fossil record of their extinct relatives reveals a diverse evolutionary history.

    Extinct crocodylians and their relatives came in all shapes and sizes, including giant land-based creatures such as Sarcosuchus, which reached around 12 metres in length and weighed up to eight metric tonnes. Crocodylians also roamed the ocean -- for example, thalattosuchians were equipped with flippers and shark-like tails to make them more agile in the sea.

    Many crocodylians survived the mass extinction that wiped out almost all of the dinosaurs 66 million years ago, but only 23 species survive today, six of which are classified by the International Union for Conservation of Nature as critically endangered and a further four classified as either endangered or vulnerable.

    In a new study published in Nature Communications, researchers from Imperial College London, the University of Oxford, the Smithsonian Institution and the University of Birmingham compiled a dataset of the entire known fossil record of crocodylians and their extinct relatives and analysed data about Earth's ancient climate. They wanted to explore how the group responded to past shifts in climate, to better understand how the reptiles may cope in the future.

    Crocodylians are ectotherms, meaning they rely on external heat sources from the environment such as the Sun. The researchers conclude that at higher latitudes in areas we now know as Europe and America, declining temperatures had a major impact on crocodylians and their relatives.

    At lower latitudes the decline of crocodylians was caused by areas on many continents becoming increasingly arid. For example, in Africa around ten million years ago, the Sahara desert was forming, replacing the vast lush wetlands in which crocodylians thrived. In South America, the rise of the Andes Mountains led to the loss of a proto-Amazonian mega wetland habitat that crocodylians lived in around five million years ago.

    Marine species of crocodylians were once widespread across the oceans. The team found that fluctuations in sea levels exerted the main control over the diversity of these creatures. For example, at times when the sea level was higher it created greater diversity because it increased the size of the continental shelf, providing the right conditions near the coast for them and their prey to thrive.

    Interestingly, the Cretaceous-Paleogene mass extinction event, which wiped out many other creatures on Earth nearly 66 million years ago including nearly all of the dinosaurs, had positive outcomes for the crocodylians and their extinct relatives. The team found that while several groups did go extinct, the surviving groups rapidly radiated out of their usual habitats to take advantage of territories that were now uninhabited.

    In the future, the team suggest that a warming world caused by global climate change may favour crocodylian diversification again, but human activity will continue to have a major impact on their habitats.

    Dr Philip Mannion, joint lead author from the Department of Earth Science and Engineering at Imperial College London, said: "Crocodylians are known by some as living fossils because they've been around since the time of the dinosaurs. Millions of years ago these creatures and their now extinct relatives thrived in a range of environments that ranged from the tropics, to northern latitudes and even deep in the ocean. However, all this changed because of changes in the climate, and crocodylians retreated to the warmer parts of the world. While they have a fearsome reputation, these creatures are vulnerable and looking back in time we've been able to determine what environmental factors had the greatest impact on them. This may help us to determine how they will cope with future changes."

    The next step for the researchers will be for them to look at similar patterns in other fossil groups with long histories, such as mammals and birds to determine how past climate influenced them.

    Source: Imperial College London [September 24, 2015]

  • Palaeontology: Newly discovered pliosaur terrorised ancient Russian seas

    Palaeontology: Newly discovered pliosaur terrorised ancient Russian seas

    The Mesozoic played host to some of the most dangerous predators to ever swim the Earth's oceans. Among these, pliosaurs were lethal hunters, and some of the largest predators ever on this planet. They were the shorter-necked cousins of the plesiosaurs, which are often spoken of in reference to their superficial similarity to the Loch Ness Monster, which we're definitely not going to do here. Together, pliosaurs and plesiosaurs form a group known as Sauropterygia, which existed in the oceans from the Triassic right until the end of the Cretaceous, when they went extinct along with the non-avian dinosaurs and other vertebrate groups. This actually makes sauropterygians the longest living group of marine-adapted tetrapods (animals with four limbs), which is quite an impressive feat!

    Newly discovered pliosaur terrorised ancient Russian seas
    Fossils of the new pliosaur, Makhaira [Credit: Fischer et al. 2015]

    New discoveries show that perhaps this evolutionary success can be attributed to the ecological diversity that this group possessed, and in particular an ability to adapt to different feeding styles.

    Valentin Fischer from the University of Oxford and an international team of researchers have discovered a new pliosaur from western Russia, named Makhaira rossica. The name dreives from the Latinized Ancient Greek word 'mákhaira', which describes a blade with a curved outline, as well as the Latin word 'rossica', which means Russian. The specimen comprises a fragmentary skeleton of a sub-adult animal, found within a series of limestone nodules along the banks of the Volga River.

    Makhaira comes from a period in Earth's geological history, known as the earliest part of the Cretaceous, where our knowledge of vertebrate life is relatively poor due to the way in which fossils are differentially preserved through time. Sadly, this lack of knowledge means that our understanding of how faunas changed from the latest part of the Jurassic period into the first part of the Cretaceous is relatively poor compared to other important geological boundaries.

    Analysis of the evolutionary placement of this new species places it as the most basal member of a group known as Brachaucheninae, which survived through the Cretaceous. However, the new species is different in being a little smaller than some of its more advanced relatives.

    Newly discovered pliosaur terrorised ancient Russian seas
    Evolutionary relationships of Makhaira with other Jurassic and Cretaceous pliosaurs 
    [Credit: Fischer et al. 2015]

    The weirdest feature of the new beasty has to be the teeth. The teeth occur in pairs, and have a trihedral form, meaning they had three peaks on each alveolus, and the edges of the teeth were adorned with wicked serrations. They were also very large, similar even to some teeth from theropod dinosaurs roaming the lands at the time!

    The morphology of these teeth suggest that they were equipped just for one thing – devouring other large animals! This form of feeding is known as macrophagy, and was a common form of predation at the time for giant marine crocodyliforms (the ancestors of modern crocodiles) called metriorhynchids. Importantly, this feeding style previously seemed to have been lost in the early evolution of other brachauchenine pliosaurs, but now appears to have been present in at least one species from this group. This shows that Early Cretaceous pliosaurs were still well adapted to hypercarnivory, and retained a high feeding diversity at the beginning of the Cretaceous, and not lost from their Jurassic ancestors.

    Recently, Alessandro Chiarenza, a colleague of mine at Imperial College London, reported on what appeared to be the oldest metriorhynchid remains currently known, from a fossil site in Sicily. Based on a single fossilised tooth from a period known as the Aptian, later on in the Cretaceous than when Makhaira was found, these remains extended the duration of metriorhynchids, and their eventual extinction, by several millions of years.

    However, the morphology of the teeth of Makhaira wasn't known at the time of publishing the crocodyliform fossils, and it seems that it is actually impossible to distinguish between these and the teeth of some metriorhynchids. This means that the Sicilian tooth cannot be referred unequivocally to either a metriorhynchid or a pliosaur – the teeth of some species is just too similar to say for certain! What does this imply though? Well, it seems that the fate of metriorhynchids is still a mystery concealed by the fossil record, and is only something that future study of these fossils, their other monstrous counterparts, and discovery of new fossils can hope to solve!

    The findings are published in the >Royal Society Open Science journal.

    Author: Victoria Costello | Source: Public Library of Science [January 16, 2016]

  • Mauritius: Dodos might have been quite intelligent, new research finds

    Mauritius: Dodos might have been quite intelligent, new research finds

    New research suggests that the dodo, an extinct bird whose name has entered popular culture as a symbol of stupidity, was actually fairly smart. The work, published in the Zoological Journal of the Linnean Society, finds that the overall size of the dodo's brain in relation to its body size was on par with its closest living relatives: pigeons--birds whose ability to be trained implies a moderate level of intelligence. The researchers also discovered that the dodo had an enlarged olfactory bulb -- the part of the brain responsible for smelling -- an uncharacteristic trait for birds, which usually concentrate their brainpower into eyesight.

    Dodos might have been quite intelligent, new research finds
    A model of a dodo that will be on display in the American Museum of Natural History's 
    upcoming exhibition about the relationships between birds and dinosaurs, 
    Dinosaurs Among Us [Credit: © AMNH/C. Chesek]

    The dodo (Raphus cucullatus) was a large, flightless bird that lived on the island of Mauritius in the Indian Ocean. They were last seen in 1662.

    "When the island was discovered in the late 1500s, the dodos living there had no fear of humans and they were herded onto boats and used as fresh meat for sailors," said Eugenia Gold, the lead author of the paper, a research associate and recent graduate of the American Museum of Natural History's Richard Gilder Graduate School, and an instructor in the Department of Anatomical Sciences at Stony Brook University. "Because of that behavior and invasive species that were introduced to the island, they disappeared in less than 100 years after humans arrived. Today, they are almost exclusively known for becoming extinct, and I think that's why we've given them this reputation of being dumb."

    Even though the birds have become an example of oddity, obsolescence, stupidity, and extinction, and have been featured in popular stories ranging from Alice in Wonderland to Ice Age, most aspects of the dodo's biology are still unknown. This is partly because dodo specimens are extremely rare, having disappeared during the nascent stage of natural history collections.

    Dodos might have been quite intelligent, new research finds
    Side views of brain endocasts from the dodo (A), the Rodrigues solitaire (B), and 
    Caloenas nicobarica (C), a type of pigeon. Enlarged olfactory bulbs, labeled "ob," 
    can be seen in the dodo and the solitaire. The scale bar is 15 millimeters 
    [Credit: © AMNH/E. Gold]

    To examine the brain of the dodo, Gold tracked down a well-preserved skull from the collections of the Natural History Museum, London, and imaged it there with high-resolution computed tomography (CT) scanning. In the American Museum of Natural History's Microscopy and Imaging Facility, she also CT-scanned the skulls of seven species of pigeons -- ranging from the common pigeon found on city streets, Columba livia, to more exotic varieties. Out of these scans, Gold built virtual brain endocasts to determine the overall brain size as well as the size of various structures. Gold's colleagues at the Natural History Museum of Denmark and National Museum of Scotland sent her the endocast for the dodo's closest relative, the extinct island-dwelling bird Rodrigues solitaire (Pezophaps solitaria).

    When comparing the size of the birds' brains to their body sizes, Gold and collaborators found that the dodo was "right on the line."

    "It's not impressively large or impressively small -- it's exactly the size you would predict it to be for its body size," Gold said. "So if you take brain size as a proxy for intelligence, dodos probably had a similar intelligence level to pigeons. Of course, there's more to intelligence than just overall brain size, but this gives us a basic measure."

    The study also revealed that both the dodo and the Rodrigues solitaire, which recently was driven to extinction by human activity, had large and differentiated olfactory bulbs. In general, birds depend much more on sight rather than smell to navigate through their world, and as a result, they tend to have larger optic lobes than olfactory bulbs. The authors suggest that, because dodos and solitaires were ground-dwellers, they relied on smell to find food, which might have included fruit, small land vertebrates, and marine animals like shellfish.

    "It is really amazing what new technologies can bring to old museum specimens," said co-author Mark Norell, Macaulay Curator of Paleontology and Chair of the Division of Paleontology at the American Museum of Natural History. "This really underscores the need for the maintenance and growth of natural history collections, because who knows what's next."

    The researchers also discovered an unusual curvature of the dodo's semicircular canal -- the balance organs located in the ear. But as of yet, there's not a good hypothesis for this atypical feature.

    Source: American Museum of Natural History [February 23, 2016]

  • Mexico: Asteroid impacts could create niches for early life, suggests Chicxulub crater study

    Mexico: Asteroid impacts could create niches for early life, suggests Chicxulub crater study

    Scientists studying the Chicxulub crater have shown how large asteroid impacts deform rocks in a way that may produce habitats for early life.

    Asteroid impacts could create niches for early life, suggests Chicxulub crater study
    Recovered core from the Chicxulub impact crater [Credit: AWuelbers@ECORD_IODP]

    Around 65 million years ago a massive asteroid crashed into the Gulf of Mexico causing an impact so huge that the blast and subsequent knock-on effects wiped out around 75 per cent of all life on Earth, including most of the dinosaurs. This is known as the Chicxulub impact.

    In April and May 2016, an international team of scientists undertook an offshore expedition and drilled into part of the Chicxulub impact crater. Their mission was to retrieve samples from the rocky inner ridges of the crater -- known as the 'peak ring' -- drilling 506 to 1335 metres below the modern day sea floor to understand more about the ancient cataclysmic event.

    Now, the researchers have carried out the first analysis of the core samples. They found that the impact millions of years ago deformed the peak ring rocks in such a way that it made them more porous, and less dense, than any models had previously predicted.

    Asteroid impacts could create niches for early life, suggests Chicxulub crater study
    Recovered core from the Chicxulub impact crater [Credit: AWuelbers@ECORD_IODP]

    Porous rocks provide niches for simple organisms to take hold, and there would also be nutrients available in the pores, from circulating water that would have been heated inside the Earth's crust. Early Earth was constantly bombarded by asteroids, and the team have inferred that this bombardment must have also created other rocks with similar physical properties. This may partly explain how life took hold on Earth.

    The study, which is published today in the >journal Science, also confirmed a model for how peak rings were formed in the Chicxulub crater, and how peak rings may be formed in craters on other planetary bodies.

    The team's new work has confirmed that the asteroid, which created the Chicxulub crater, hit the Earth's surface with such a force that it pushed rocks, which at that time were ten kilometres beneath the surface, farther downwards and then outwards. These rocks then moved inwards again towards the impact zone and then up to the surface, before collapsing downwards and outwards again to form the peak ring. In total they moved an approximate total distance of 30 kilometres in a matter of a few minutes.

    Asteroid impacts could create niches for early life, suggests Chicxulub crater study
    Recovered core from the Chicxulub impact crater [Credit: DSmith@ECORD]

    Professor Joanna Morgan, lead author of the study from the Department of Earth Science and Engineering, said: "It is hard to believe that the same forces that destroyed the dinosaurs may have also played a part, much earlier on in Earth's history, in providing the first refuges for early life on the planet. We are hoping that further analyses of the core samples will provide more insights into how life can exist in these subterranean environments."

    The next steps will see the team acquiring a suite of detailed measurements from the recovered core samples to refine their numerical simulations. Ultimately, the team are looking for evidence of modern and ancient life in the peak-ring rocks. They also want to learn more about the first sediments that were deposited on top of the peak ring, which could tell the researchers if they were deposited by a giant tsunami, and provide them with insights into how life recovered, and when life actually returned to this sterilised zone after the impact.

    Source: Imperial College London [November 17, 2016]

  • Japan: Unique Mosasaur fossil discovered in Japan

    Japan: Unique Mosasaur fossil discovered in Japan

    An international research partnership is revealing the first mosasaur fossil of its kind to be discovered in Japan. Not only does the 72-million-year-old marine reptile fossil fill a biogeographical gap between the Middle East and the eastern Pacific, but also it holds new revelations because of its superior preservation. This unique swimming lizard, now believed to have hunted on glowing fish and squids at night, is detailed in an article led by Takuya Konishi, a University of Cincinnati assistant professor of biological sciences. The article is published in the Journal of Systematic Palaeontology, a publication of the Natural History Museum in London.

    Unique Mosasaur fossil discovered in Japan

    Unique Mosasaur fossil discovered in Japan
    An international research partnership is revealing the first mosasaur fossil of its kind to
     be discovered in Japan. Not only does the 72-million-year-old marine reptile fossil fill 
    a biogeographical gap between the Middle East and the eastern Pacific, but also 
    it holds new revelations because of its superior preservation 
    [Credit: Takuya Konishi/University of Cincinnati]

    The fossil marine reptile, Phosphorosaurus ponpetelegans (a phosphorus lizard from an elegant creek), existed during the Late Cretaceous Period just before the last of the dinosaurs such as Tyrannosaurus and Triceratops. Compared with some of their mosasaur cousins that could grow as large as 40 feet, this species is relatively small, about 3 meters, or 10 feet long. This unique discovery in a creek in the town of Mukawa in northern Japan reveals that they were able to colonize throughout the northern hemisphere.

    "Previous discoveries of this particular rare mosasaur have occurred along the East Coast of North America, the Pacific Coast of North America, Europe and North Africa, but this is the first to fill the gap between the Middle East and the Eastern Pacific," explains Konishi, a member of the research team that also was represented by the Royal Tyrrell Museum of Palaeontology (Canada), University of Alberta, Brandon University, Hobetsu Museum (Japan), Fukuoka University and the town of Mukawa.

    Because the fossil was so well preserved, the creature revealed it had binocular vision -- its eyes were on the front of the face, providing depth perception. This was a new discovery for this fossil species. The discovery reveals that the eye structure of these smaller mosasaurs was different from their larger cousins, whose eyes were on either side of their large heads, such as the eye structure of a horse. The eyes and heads of the larger mosasaurs were shaped to enhance streamlined swimming after prey that included fish, turtles and even small mosasaurs.

    Unique Mosasaur fossil discovered in Japan
    The calcareous nodule that enclosed the fossil [Credit: Takuya Konishi/
    University of Cincinnati]

    "The forward-facing eyes on Phosphorosaurus provide depth perception to vision, and it's common in birds of prey and other predatory mammals that dwell among us today," says Konishi. "But we knew already that most mosasaurs were pursuit predators based on what we know they preyed upon -- swimming animals. Paradoxically, these small mosasaurs like Phosphorosaurus were not as adept swimmers as their larger contemporaries because their flippers and tailfins weren't as well developed."

    As a result, Konishi says it's believed these smaller marine reptiles hunted at night, much like the owl does compared with the daytime birds of prey such as eagles. The binocular vision in nocturnal animals doubles the number of photoreceptors to detect light. And, much like owls with their very large eyes to power those light receptors, the smaller mosasaur revealed very large eye sockets.

    Also, because fossils of lantern fish and squid-like animals have been found from the Late Cretaceous Period in northern Japan, and because their modern counterparts are bioluminescent, the researchers believe that Phosphorosaurus may have specifically targeted those glowing fish and squids at night while their larger underwater cousins hunted in daytime.

    "If this new mosasaur was a sit-and-wait hunter in the darkness of the sea and able to detect the light of these other animals, that would have been the perfect niche to coexist with the more established mosasaurs," says Konishi.

    Painstaking Preservation

    The fossil, enclosed in a rock matrix, was first discovered in 2009, in a small creek in northern Japan. Revealing what was inside the matrix while protecting the fossil was a painstaking process that took place at the Hobetsu Museum in Mukawa. The calcareous nodule would be dipped at night in a special acid wash, and then carefully rinsed the next day, as the two-year process freed the bones from the matrix. To further protect the fossil, special casts were made of the bones so that the researchers could piece together the remains without damaging the fossil.

    "It's so unusually well-preserved that, upon separating jumbled skull bones from one another, we were able to build a perfect skull with the exception of the anterior third of the snout," says Konishi. "This is not a virtual reality reconstruction using computer software. It's a physical reconstruction that came back to life to show astounding detail and beautiful, undistorted condition."

    Future Research

    Konishi says future research will examine how this new mosasaur fits in the evolutionary family tree of mosasaurs.

    Author: Dawn Fuller | Source: University of Cincinnati [December 08, 2015]

  • Fossils: Oldest pine fossils reveal fiery past

    Fossils: Oldest pine fossils reveal fiery past

    Scientists have found the oldest fossils of the familiar pine tree that dominates Northern Hemisphere forests today.

    Oldest pine fossils reveal fiery past
    False-colour image of the fossil 
    [Credit: H. Falcon-Lang]

    Scientists from the Department of Earth Sciences at Royal Holloway, University of London have found the oldest fossils of the familiar pine tree that dominates Northern Hemisphere forests today.

    The 140-million-year-old fossils (dating from the Cretaceous 'Age of the Dinosaurs') are exquisitely preserved as charcoal, the result of burning in wildfires. The fossils suggest that pines co-evolved with fire at a time when oxygen levels in the atmosphere were much higher and forests were especially flammable.

    Dr Howard Falcon-Lang from Royal Holloway, University of London) discovered the fossils in Nova Scotia, Canada. He said: "Pines are well adapted to fire today. The fossils show that wildfires raged through the earliest pine forests and probably shaped the evolution of this important tree." Modern pines store flammable resin-rich deadwood on the tree making them prone to lethal fires. However, they also produce huge numbers of cones that will only germinate after a fire, ensuring a new cohort of trees is seeded after the fire has passed by."

    The research is published in the journal Geological Society of America.

    Source: University of Royal Holloway London [March 10, 2016]

  • Genetics: A 100-million-year partnership on the brink of extinction

    Genetics: A 100-million-year partnership on the brink of extinction

    A relationship that has lasted for 100 million years is at serious risk of ending, due to the effects of environmental and climate change. A species of spiny crayfish native to Australia and the tiny flatworms that depend on them are both at risk of extinction, according to researchers from the UK and Australia.

    A 100-million-year partnership on the brink of extinction
    A light microscope image of the five tentacle temnocephalan Temnosewellia c.f rouxi from cultured redclaw crayfish 
    [Credit: David Blair/James Cook University]

    Look closely into one of the cool, freshwater streams of eastern Australia and you might find a colourful mountain spiny crayfish, from the genus Euastacus. Look even closer and you could see small tentacled flatworms, called temnocephalans, each only a few millimetres long. Temnocephalans live as specialised symbionts on the surface of the crayfish, where they catch tiny food items, or inside the crayfish's gill chamber where they can remove parasites. This is an ancient partnership, but the temnocephalans are now at risk of coextinction with their endangered hosts. Coextinction is the loss of one species, when another that it depends upon goes extinct.

    In a new study, researchers from the UK and Australia reconstructed the evolutionary and ecological history of the mountain spiny crayfish and their temnocephalan symbionts to assess their coextinction risk. This study was based on DNA sequences from crayfish and temnocephalans across eastern Australia, sampled by researchers at James Cook University, sequenced at the Natural History Museum, London and Queensland Museum, and analysed at the University of Sydney and the University of Cambridge. The results are published in the >Proceedings of the Royal Society B.

    "We've now got a picture of how these two species have evolved together through time," said Dr Jennifer Hoyal Cuthill from Cambridge's Department of Earth Sciences, the paper's lead author. "The extinction risk to the crayfish has been measured, but this is the first time we've quantified the risk to the temnocephalans as well -- and it looks like this ancient partnership could end with the extinction of both species."

    Mountain spiny crayfish species diversified across eastern Australia over at least 80 million years, with 37 living species included in this study. Reconstructing the ages of the temnocephalans using a 'molecular clock' analysis showed that the tiny worms are as ancient as their crayfish hosts and have evolved alongside them since the Cretaceous Period.

    >A symbiotic relationship that has existed since the time of the dinosaurs is at risk of ending,> as habitat loss and environmental change mean that a species of Australian crayfish >and the tiny worms that depend on them are both at serious risk of extinction >[Credit: David Blair/James Cook University]
    Today, many species of mountain spiny crayfish have small geographic ranges. This is especially true in Queensland, where mountain spiny crayfish are restricted to cool, high-altitude streams in small pockets of rainforest. This habitat was reduced and fragmented by long-term climate warming and drying, as the continent of Australia drifted northwards over the last 165 million years. As a consequence, mountain spiny crayfish are severely threatened by ongoing climate change and the International Union for the Conservation of Nature (IUCN) has assessed 75% of these species as endangered or critically endangered.

    "In Australia, freshwater crayfish are large, diverse and active 'managers', recycling all sorts of organic material and working the sediments," said Professor David Blair of James Cook University in Australia, the paper's senior author. "The temnocephalan worms associated only with these crayfish are also diverse, reflecting a long, shared history and offering a unique window on ancient symbioses. We now risk extinction of many of these partnerships, which will lead to degradation of their previous habitats and leave science the poorer."

    The crayfish tend to have the smallest ranges in the north of Australia, where the climate is the hottest and all of the northern species are endangered or critically endangered. By studying the phylogenies (evolutionary trees) of the species, the researchers found that northern crayfish also tended to be the most evolutionarily distinctive. This also applies to the temnocephalans of genus Temnosewellia, which are symbionts of spiny mountain crayfish across their geographic range. "This means that the most evolutionarily distinctive lineages are also those most at risk of extinction," said Hoyal Cuthill.

    The researchers then used computer simulations to predict the extent of coextinction. This showed that if all the mountain spiny crayfish that are currently endangered were to go extinct, 60% of their temnocephalan symbionts would also be lost to coextinction. The temnocephalan lineages that were predicted to be at the greatest risk of coextinction also tended to be the most evolutionarily distinctive. These lineages represent a long history of symbiosis and coevolution of up to 100 million years. However they are the most likely to suffer coextinction if these species and their habitats are not protected from ongoing environmental and climate change.

    "The intimate relationship between hosts and their symbionts and parasites is often unique and long lived, not just during the lifespan of the individual organisms themselves but during the evolutionary history of the species involved in the association," said study co-author Dr Tim Littlewood of the Natural History Museum. "This study exemplifies how understanding and untangling such an intimate relationship across space and time can yield deep insights into past climates and environments, as well as highlighting current threats to biodiversity."

    Source: University of Cambridge [May 24, 2016]

  • Fossils: Decline of crocodile ancestors was good news for early marine turtles

    Fossils: Decline of crocodile ancestors was good news for early marine turtles

    Marine turtles experienced an evolutionary windfall thanks to a mass extinction of crocodyliforms around 145 million years ago, say researchers.

    Decline of crocodile ancestors was good news for early marine turtles
    Marine turtles experienced an evolutionary windfall thanks to a mass extinction 
    of crocodyliforms around 145 million years ago, say researchers 
    [Credit: Imperial College London]

    Crocodyliforms comprise modern crocodiles and alligators and their ancient ancestors, which were major predators that thrived on Earth millions of years ago. They evolved into a variety of species including smaller ones that lived on land through to mega-sized sea-swimming species that were up to 12 metres long. However, around 145 million years ago crocodyliforms, along with many other species, experienced a severe decline - an extinction event during a period between two epochs known as the Jurassic/Cretaceous boundary.

    Now a PhD student and his colleagues from Imperial College London and University College London have carried out an extensive analysis of 200 species of crocodyliforms from a fossil database. One of the findings of the study is that the timing of the extinction coincided with the origin of modern marine turtles. The team suggest that the ecological pressure may have been lifted from early marine turtle ancestors due to the extinction of many marine crocodyliforms, which were one of their primary predators.

    Jon Tennant, lead author of the study from the Department of Earth Science and Engineering at Imperial, said: "This major extinction of crocodyliforms was literally a case of out with the old and in with the new for many species. Marine turtles, the gentle, graceful creatures of the sea, may have been one of the major winners from this changing of the old guard. They began to thrive in oceans around the world when their ferocious arch-predators went into terminal decline."

    Decline of crocodile ancestors was good news for early marine turtles
    An artist's illustration shows what the Jurassic-age crocodile may have
     looked like in the water [Credit: Jon Hughes]

    In the study, published in the journal Proceedings of the Royal Society B, the researchers point to evidence in the records of a dramatic extinction of crocodyliforms during the Jurassic/Cretaceous boundary. Up to 80 per cent of species on land and in marine environments were wiped out. This decline was primarily due to a drop in sea levels, which led to a closing off of shallow marine environments such as lagoons and coastal swamps. These were the homes and primary hunting grounds for many crocodyliforms.

    The decimation of many marine crocodyliforms may also have laid the way for their ecological replacement by other large predatory groups such as modern shark species and new types of plesiosaurs. Plesiosaurs were long-necked, fat-bodied and small-headed ocean-going creatures with fins, which later went extinct around 66 million years ago.

    Other factors that contributed to the decline of marine crocodyliforms included a change in the chemistry of ocean water with increased sulphur toxicity and a depletion of oxygen.

    While primitive crocodyliform species on land also suffered major declines, the remaining species diversified into new groups such as the now extinct notosuchians, which were much smaller in size at around 1.5 metres in length. Eusuchians also came to prominence after the extinction, which led to today's crocodiles.

    To carry out the study on crocodyliforms the team used the Paleobiology Database, which is a professionally curated digital archive of all known fossil records. The team analysed almost 1,200 crocodyliform fossil records.

    Scientists have known since the early 1970s about the Jurassic/Cretaceous boundary extinction from fossil records. However, researchers have focussed on other extinction events and as a consequence less has been done to understand in detail the effects of Jurassic/Cretaceous boundary extinction on species like crocodyliforms.

    The next steps will see the analysis extended to other groups including dinosaurs, amphibians and mammals to learn more about the effects of the Jurassic/Cretaceous boundary on their biodiversity

    Source: Imperial College London [March 09, 2016]

  • Natural Heritage: Fate of turtles, tortoises affected more by habitat than temperature

    Natural Heritage: Fate of turtles, tortoises affected more by habitat than temperature

    Habitat degradation poses a greater risk to the survival of turtles and tortoises than rising global temperatures, according to new research.

    Fate of turtles, tortoises affected more by habitat than temperature
    Habitat degradation poses a greater risk to the survival of turtles and tortoises 
    than rising global temperatures [Credit: NHM, London]

    More than 60 per cent of the group are listed by the International Union for Conservation of Nature (IUCN) as vulnerable, endangered, or critically endangered, because they are being traded, collected for food and medicine and their habitats are being degraded. Understanding the additional impact of global warming and changes in rainfall patterns on their diversity and distributions is therefore paramount to their conservation.

    The team of researchers set out to test if long-term climate change poses a threat or opportunity to turtles and tortoises and how they might respond to increased global temperatures.

    As turtles live such long lives, it is impossible to conduct experiments to test for the impact of warming over several generations. The group used a novel combination of state of the art climate models and the deep time fossil record of turtles during warmer times.

    The Late Cretaceous fossil record (66-72 million years ago), dating from the time just before the demise of the dinosaurs, was investigated as a natural experiment to quantify differences between the ecology of living turtles and tortoises and those living in an earlier, warmer greenhouse world.

    The results of this study, funded by the Natural Environment Research Council (NERC) with support from The Royal Society, show that during periods with much warmer climates, turtles and tortoises were able to stand the heat in the warmer tropics -- as long as there was enough water to support those species living in rivers and lakes.

    Amy Waterson, PhD student and lead author from the University of Bristol, said: "Some groups of turtles have maintained similar niches over millions of years. They have withstood warmer climates in the past and their ability to adapt to the rate of environmental change happening today will be an important factor in their resilience to future climate change."

    Turtles and tortoises are highly sensitive to changes in temperature and rainfall, hence concerns about the impact of climate change on their distribution. Alongside overexploitation and habitat loss, climate change is a significant threat to their conservation status with growth, abundance and geographical ranges all predicted to decline under future climate change projections.

    In many species, temperature determines if the egg will develop into a male or female showing a direct impact of warming. As the group lives in ponds, rivers, on land and in the sea climate change can impact them via changes in temperature, rainfall, and major ocean currents.

    However, Professor Daniela Schmidt, an expert in palaeobiology from the University of Bristol's School of Earth Sciences, explained that the bigger question for the conservation of the group is not how warm it will be in the near future but how fast that warming will be: "The largest difference between the warm Cretaceous and today is that this earlier warming happened over tens of thousands of years, giving these animals a chance to adapt to these conditions, not in a century."

    Professor Paul Barrett from the Natural History Museum, London added: "Other conservation threats, such as humanmade habitat degradation and barriers to movement, might be as important in determining the fates of turtles in a warming world as the warming itself."

    The study is published in the >Royal Society of Proceedings B.

    Source: University of Bristol [September 22, 2016]

  1. Wonders of Constantinople's underground water world to go on display in Istanbul
  2. The Lapita: Oceanic Ancestors exhibition at the Quai Branly Museum in Paris
  3. Bulgaria to unveil 10,000 unique archaeology treasures
  4. Public to see limestone box that may have been casket for Jesus’ brother
  5. 'Rhodes: A Greek Island and Gateway to the East' at the Louvre