The Great London [Search results for Mongolia

  • Italy: Fossil find reveals just how big carnivorous dinosaur may have grown

    Italy: Fossil find reveals just how big carnivorous dinosaur may have grown

    An unidentified fossilised bone in a museum has revealed the size of a fearsome abelisaur and may have solved a hundred-year old puzzle.

    Fossil find reveals just how big carnivorous dinosaur may have grown
    Artist impression of abelisaur [Credit: Imperial College London]

    Alessandro Chiarenza, a PhD student from Imperial College London, last year stumbled across a fossilised femur bone, left forgotten in a drawer, during his visit to the Museum of Geology and Palaeontology in Palermo Italy. He and a colleague Andrea Cau, a researcher from the University of Bologna, got permission from the museum to analyse the femur. They discovered that the bone was from a dinosaur called abelisaur, which roamed the Earth around 95 million years ago during the late Cretaceous period.

    Abelisauridae were a group of predatory, carnivorous dinosaurs, characterised by extremely small forelimbs, a short deep face, small razor sharp teeth, and powerful muscular hind limbs. Scientists suspect they were also covered in fluffy feathers. The abelisaur in today's study would have lived in North Africa, which at that time was a lush savannah criss-crossed by rivers and mangrove swamps. This ancient tropical world would have provided the abelisaur with an ideal habitat for hunting aquatic animals like turtles, crocodiles, large fish and other dinosaurs.

    By studying the bone, the team deduced that this abelisaur may have been nine metres long and weighed between one and two tonnes, making it potentially one of the largest abelisaurs ever found. This is helping researchers to determine the maximum sizes that these dinosaurs may have reached during their peak.

    Alfio Alessandro Chiarenza, co-author of the study from the Department of Earth Science and Engineering at Imperial, said: "Smaller abelisaur fossils have been previously found by palaeontologists, but this find shows how truly huge these flesh eating predators had become. Their appearance may have looked a bit odd as they were probably covered in feathers with tiny, useless forelimbs, but make no mistake they were fearsome killers in their time."

    The fossil originated from a sedimentary outcrop in Morocco called the Kem Kem Beds, which are well known for the unusual abundance of giant predatory dinosaur fossils. This phenomenon is called Stromer's Riddle, in honour the German palaeontologist Ernst Stromer, who first identified this abundance in 1912. Since then scientists have been asking how abelisaurs and five other groupings of predatory dinosaurs could have co-existed in this region at the same time, without hunting each other into extinction.

    Now the researchers in today's study suggest that these predatory dinosaur groups may not have co-existed so closely together. They believe that the harsh and changing geology of the region mixed the fossil fragment records together, destroying its chronological ordering in the Kem Kem beds, and giving the illusion that the abelisaurs and their predatory cousins shared the same terrain at the same time. Similar studies of fossil beds in nearby Tunisia, for example, show that creatures like abelisaurs were inland hunters, while other predators like the fish eating spinosaurs probably lived near mangroves and rivers.

    Chiarenza added: "This fossil find, along with the accumulated wealth of previous studies, is helping to solve the question of whether abelisaurs may have co-existed with a range of other predators in the same region. Rather than sharing the same environment, which the jumbled up fossil records may be leading us to believe, we think these creatures probably lived far away from one another in different types of environments."

    Fossilised femora are useful for palaeontologists to study because they can determine the overall size of the dinosaur. This is because femora are attached to the thigh and tail muscles and have scars, or bumps, which tell palaeontologists where the ligaments and muscles were attached to the bone and how big those muscles and ligaments would have been.

    Andrea Cau, co-author from the University of Bologna, said: "While palaeontologists usually venture to remote and inaccessible locations, like the deserts of Mongolia or the Badlands of Montana, our study shows how museums still play an important role in preserving specimens of primary scientific value, in which sometimes the most unexpected surprises can be discovered. As Stephen Gould, an influential palaeontologist and evolutionary biologist, once said, sometimes the greatest discoveries are made in museum drawers."

    The study is published in the journal Peer J. Chiarenza did the underpinning analysis with Cau while at the University of Bologna.

    The next step will see the team looking for more complete remains from these predatory dinosaurs trying to better understand their environment and evolutionary history.

    Author: Colin Smith | Source: Imperial College London [February 29, 2016]

  • Mongolia: First demonstration of sexual selection in dinosaurs identified

    Mongolia: First demonstration of sexual selection in dinosaurs identified

    Large ornamental structures in dinosaurs, such as horns and head crests are likely to have been used in sexual displays and to assert social dominance, according to a new analysis of Protoceratops carried out by scientists at Queen Mary University of London (QMUL). This is the first time scientists have linked the function of anatomy to sexual selection in dinosaurs.

    First demonstration of sexual selection in dinosaurs identified
    Life restoration of adult Protoceratops andrewsi in the foreground engaging 
    in speculative display postures. Non-mature animals can be seen 
    in the background [Credit: Rebecca Gelernter/QMUL]

    Protoceratops had a large bony frill that extended from the back of the head over the neck. Study of fossils aged from babies to adults revealed the adults to have disproportionately larger frills in relation to their size. The research, published in the journal >Palaeontologia Electronica, shows that the frill was absent in juveniles and suddenly increased in size as the animals reached maturity suggesting that its function is linked to sexual selection.

    This suggests the frill might have been used to attract suitable mates by showing off their best attributes or helping them assert the most dominant position in social interactions.

    First demonstration of sexual selection in dinosaurs identified
    Protoceratops ornamental structures were disproportionately large in mature animals, compared to younger specimens, 
    giving the scientists the first direct evidence linking the function of an anatomical feature to sexual selection 
    in dinosaurs [Credit: Richard T. Nowitz/Corbis]

    Dr David Hone, lecturer in Zoology from QMUL's School of Biological and Chemical Sciences, said: "Palaeontologists have long suspected that many of the strange features we see in dinosaurs were linked to sexual display and social dominance but this is very hard to show. The growth pattern we see in Protoceratops matches that seen for signalling structures in numerous different living species and forms a coherent pattern from very young animals right through to large adults."

    The researchers assessed the change in length and width of the frill over four life stages: hatchling babies, young animals, near-adults, and adults. Not only did the frill change in size but it also changed in shape, becoming proportionally wider as the dinosaur became older.

    First demonstration of sexual selection in dinosaurs identified
    Dr David Hone, a lecturer in zoology at Queen Mary University of London (QMUL), said the role of these elaborate 
    features in mating had long been suspected, but had been impossible to prove. Triceratops, a later beaked 
    dinosaur also had ornate facial features [Credit: Mark Stevenson/Stocktrek Images/Corbis]

    Dr Rob Knell, Reader in Evolutionary Ecology, also from QMUL's School of Biological and Chemical Sciences, said: "Biologists are increasingly realising that sexual selection is a massively important force in shaping biodiversity both now and in the past. Not only does sexual selection account for most of the stranger, prettier and more impressive features that we see in the animal kingdom, it also seems to play a part in determining how new species arise, and there is increasing evidence that it also has effects on extinction rates and on the ways by which animals are able to adapt to changing environments."

    The research formed part of current postgraduate student and QMUL graduate Dylan Wood's undergraduate thesis, which looked at sexual selection in extinct species.

    First demonstration of sexual selection in dinosaurs identified
    Protoceratops is a member of the ceratopisian group of beaked herbivorous dinosaurs, which includes the familiar and 
    much larger three-horned Triceratops[Credit: Kevin Schafer/Corbis]

    There are numerous, well-preserved specimens of ceratopisian dinosaurs of various sizes and ages making them a good groups to analyse. The researchers analysed 37 specimens of Protoceratops from fossils found in the Djadochta Formation in the Gobi desert and from previous published research. Protoceratops was a small-horned dinosaur that was similar in size to a sheep and was around 2m in total length from snout to tail tip.

    Source: Queen Mary, University of London [January 13, 2016]

  1. Magic of ancient Egypt transforms the Museum of Fine Arts, St. Petersburg, Florida
  2. Napoleon and Europe: Dream and Trauma
  3. A treasure horde of art and history under one roof
  4. Art Institute announces major long-term loan of ancient Near Eastern statuette
  5. Treasure trove of medieval manuscripts published